Programming Languages
and Techniques
(C1S120)

Lecture 7/
January 29", 2016

Binary Search Trees
(Lecture notes Chapter 7)

let rec height (t:tree) : int =
begin match t with
| Empty -> 0@
| Node (left, _, right) ->
1 + max (height left)
(height right)
end

What is the height of this
tree?

(press # corresponding to
answer)

Answer: 4

let rec inorder (t:tree) : int list =

begin match t with
| Empty -> []
| Node (left, x, right) ->
1norder left @
(x :: 1norder right)
end

What is the result of this
function on this tree?

1. 1[I

2. [1;2;3;4,5;6;7]
3. 1

4. [4;2;1;3;5;6;7] u
5. [4]

6. [1;1;1;1;1;1;1]

7. none of the above

Answer: 2

Announcements

e Homework 2is online
— due Tuesday

* Examl
— Main exam, Tuesday evening Feb 16t", 6-8 PM

— Make-up exam, Wednesday morning, Feb 17t", 9-11 AM

— You must take the main exam if you can; | need to know ahead of time
if you need to take the make-up exam

Big idea: find things faster by searching less

Trees as Containers

* Like lists, binary trees aggregate data

 As wedid for lists, we can write a function to determine
whether the data structure contains a particular element

type tree =
| Empty
| Node of tree * int * tree

Searching for Data in a Tree

let rec contains (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) -> x=n 1|
(contains 1t n) |l (contains rt n)
end

e Thisfunction searchesthroughthe tree, looking for n

* Intheworstcase, it might have to traverse the entire tree

Searching for Data in a Tree

| Empty -> false

end

| Node(lt,x,rt) -> x
(contains 1t n

let rec contains (t:tree) (n:int) : bool =
begin match t with

(contains rt n)

contains (Node(Node(Node (Empty, @, Empty), 1, Node(Empty, 3, Empty)),

5, Node (Empty, 7, Empty))) 7

contains (Node (Empty, 7, Empty)) 7

contains (Node(Node (Empty, @, Empty), 1, Node(Empty, 3, Empty))) 7

(1 == 7 || contains (Node (Empty, 0, Empty)) 7
| | contains (Node(Empty, 3, Empty)) 7)
|| contains (Node (Empty, 7, Empty)) 7

((@ == 7 || contains Empty 7 || contains Empty 7)
| | contains (Node(Empty, 3, Empty)) 7)
| | contains (Node (Empty, 7, Empty)) 7

contains (Node(Empty, 3, Empty)) 7
| | contains (Node (Empty, 7, Empty)) 7

contains (Node (Empty, 7, Empty)) 7

Challenge: Faster Search?

Binary Search Trees

 Keyinsight:
Ordered data can be searched more quickly
— This is why telephone books are arranged alphabetically
— But requires the ability to focus on half of the current data

 Abinary search tree (BST)is a binary tree with some
additional invariants*:

*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x
* Emptyis a BST

*An data structure invariant is a set of constraints about the way that the data is organized.
“types” (e.g. list or tree) are one kind of invariant, but we often impose additional constraints.

An Example Binary Search Tree

Note that the BST
invariants hold for
this tree.

*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- all nodes of 1t are < x
- all nodes of rt are > x
* Empty is a BST

Searchin a BST: (lookup t 8)

8>5

Searching a BST

(* Assumes that t 1s a BST *)
let rec lookup (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) ->
i1f X = n then true
else if n < x then (lookup 1t n)
else (lookup rt n)
end

 The BSTinvariants guide the search.

 Notethatlookup mayreturnanincorrect answer if the input
is not a BST!

— This function assumes that the BST invariants hold of t.

BST Performance

« lookuptakestime proportional to the height of the tree.
— not the size of the tree (as it does with contains)

* Inabalanced tree, the lengths of the paths from the root to
each leaf are (almost) the same.
— no leaf is too far from the root

— the height of the BST is minimized

— the height of a balanced binary tree is roughly log,(N) where N is the
number of nodes in the tree

unbalanced

balanced

Is this a BST??

1. yes
2. no

*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs oy L
- all nodes of 1t are < x ./ L
- all nodes of rt are > x

« Empty is a BST Answer: no, 7 to the left of 6

Is this a BST??

1. yes
2. no

*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodes of 1t are < x e Y
- allnodes of rt are > x Answer: Yes g Ry
* Empty is a BST

Is this a BST??

1. yes
2. no

*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs oy L
- all nodes of 1t are < x ./ L
- all nodes of rt are > x

« Empty is a BST Answer: no, 5 to the left of 4

Is this a BST??

1. yes
2. no

*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs oy L
- all nodes of 1t are < x ./ L
- all nodes of rt are > x

- Empty is a BST Answer: no, 4 to the right of 4

Is this a BST??

1. yes
2. ho

*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodes of 1t are < x

- allnodes of rt are > x
« Empty is a BST Answer: yes

Is this a BST??

1. yes
2. ho

*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodes of 1t are < x

- allnodes of rt are > x
« Empty is a BST Answer: yes

Inserting an element

How do we construct a BST?

* Option 1:
— Build a tree
— Check that the BST invariants hold (unlikely!)
— Impractically inefficient

* Option 2:
— Write functions for building BSTs from other BSTs
* e.g. “insert an element”, “delete an element”, ...

— Starting from some trivial BST (e.g. Empty), apply these
functions to get the BST we want

— |If each of these functions preserves the BST invariants, then any
tree we get from them will be a BST by construction
* No need to check!

— ldeally: “rebalance” the tree to make lookup efficient
(NOT in CIS 120, see CIS 121)

Inserting a new node: (1nsert t 4)

Inserting a new node: (1nsert t 4)

Inserting Into a BST

(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
if X = n then t
else if n < x then Node(insert 1t n, x, rt)
else Node(lt, x, insert rt n)
end

Note the similarity to searching the tree.

Note that the resultis a new tree with one more Node; the
original tree is unchanged

Assumingthatt is a BST, the resultis also a BST. (Why?)

