Programming Languages and Techniques (CIS120)

Lecture 7

January 29th, 2016

Binary Search Trees (Lecture notes Chapter 7)

Answer: 4

What is the result of this function on this tree?

- 1. []
- 2. [1;2;3;4;5;6;7]
- 3. 1
- 4. [4;2;1;3;5;6;7]
- 5. [4]
- 6. [1;1;1;1;1;1]
- 7. none of the above

Announcements

- Homework 2 is online
 - due Tuesday

• Exam1

- Main exam, Tuesday evening Feb 16th, 6-8 PM
- Make-up exam, Wednesday morning, Feb 17th, 9-11 AM
- You must take the main exam if you can; I need to know ahead of time if you need to take the make-up exam

Trees as containers

Big idea: find things faster by searching less

Trees as Containers

- Like lists, binary trees aggregate data
- As we did for lists, we can write a function to determine whether the data structure contains a particular element

```
type tree =
| Empty
| Node of tree * int * tree
```

Searching for Data in a Tree

- This function searches through the tree, looking for n
- In the worst case, it might have to traverse the entire tree

Searching for Data in a Tree


```
contains (Node(Node(Empty, 0, Empty), 1, Node(Empty, 3, Empty)),
                   5, Node (Empty, 7, Empty))) 7
5 == 7
II contains (Node(Node (Empty, 0, Empty), 1, Node(Empty, 3, Empty))) 7
II contains (Node (Empty, 7, Empty)) 7
(1 == 7 \mid l \text{ contains (Node (Empty, 0, Empty))} 7
        Il contains (Node(Empty, 3, Empty)) 7)
II contains (Node (Empty, 7, Empty)) 7
((0 == 7 \mid 1 \text{ contains Empty } 7 \mid 1 \text{ contains Empty } 7)
         Il contains (Node(Empty, 3, Empty)) 7)
II contains (Node (Empty, 7, Empty)) 7
contains (Node(Empty, 3, Empty)) 7
II contains (Node (Empty, 7, Empty)) 7
contains (Node (Empty, 7, Empty)) 7
```

Challenge: Faster Search?

Binary Search Trees

- Key insight:
 - Ordered data can be searched more quickly
 - This is why telephone books are arranged alphabetically
 - But requires the ability to focus on half of the current data
- A binary search tree (BST) is a binary tree with some additional invariants*:
 - Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
 - Empty is a BST

^{*}An data structure invariant is a set of constraints about the way that the data is organized.

[&]quot;types" (e.g. list or tree) are one kind of invariant, but we often impose additional constraints.

An Example Binary Search Tree

Search in a BST: (lookup t 8)

Searching a BST

```
(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
  begin match t with
  | Empty -> false
  | Node(lt,x,rt) ->
      if x = n then true
      else if n < x then (lookup lt n)
      else (lookup rt n)
  end</pre>
```

- The BST invariants guide the search.
- Note that lookup may return an incorrect answer if the input is not a BST!
 - This function assumes that the BST invariants hold of t.

BST Performance

- lookup takes time proportional to the height of the tree.
 - not the size of the tree (as it does with contains)
- In a balanced tree, the lengths of the paths from the root to each leaf are (almost) the same.
 - no leaf is too far from the root
 - the height of the BST is minimized
 - the height of a balanced binary tree is roughly log₂(N) where N is the number of nodes in the tree

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt $\mbox{are} < x$
 - all nodes of rt are > x
- Empty is a BST

Answer: no, 7 to the left of 6

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt $\mbox{are} < x$
 - all nodes of rt are > x
- Empty is a BST

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt $\mbox{are} < x$
 - all nodes of rt are > x
- Empty is a BST

Answer: no, 5 to the left of 4

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt $\mbox{are} < x$
 - all nodes of rt are > x
- Empty is a BST

Answer: no, 4 to the right of 4

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
- Empty is a BST

Answer: yes

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
- Empty is a BST

Answer: yes

Constructing BSTs

Inserting an element

How do we construct a BST?

Option 1:

- Build a tree
- Check that the BST invariants hold (unlikely!)
- Impractically inefficient

Option 2:

- Write functions for building BSTs from other BSTs
 - e.g. "insert an element", "delete an element", ...
- Starting from some trivial BST (e.g. Empty), apply these functions to get the BST we want
- If each of these functions preserves the BST invariants, then any tree we get from them will be a BST by construction
 - No need to check!
- Ideally: "rebalance" the tree to make lookup efficient (NOT in CIS 120, see CIS 121)

Inserting a new node: (insert t 4)

Inserting a new node: (insert t 4)

Inserting Into a BST

```
(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
  begin match t with
  I Empty -> Node(Empty,n,Empty)
  I Node(lt,x,rt) ->
     if x = n then t
     else if n < x then Node(insert lt n, x, rt)
     else Node(lt, x, insert rt n)
  end</pre>
```

- Note the similarity to searching the tree.
- Note that the result is a new tree with one more Node; the original tree is unchanged
- Assuming that t is a BST, the result is also a BST. (Why?)