Programming Languages
and Techniques
(C1S120)

Lecture 10
February 5t", 2016

Abstract types: sets
Lecture notes: Chapter 10

What is the value of this expresssion?

let f (x:bool) (y:int) : int =
if x then 1 else y 1in

f true

1.1

2. true

3. fun (y:int) -> if true then 1 else y
4. fun (x:bool) -> if x then 1 else y

Answer: 3

Announcements

 Homework 3 is available
— due Tuesday at midnight

* Read Chapter 10 of lecture notes

e Midterm 1

— Register for makeup exam on course website

The “fold’ design pattern

Refactoring code, again

* |stherea patternin the definition of these two functions?

begin match 1 with

| [] -> false

| h :: t ->h M base case:

end Simple answer when
\ the list is empty

let rec exists (1 : bool 1list) : bool =

let rec acid_length (1 :
begin match 1 wi

: int = |

combine step:

| [] > 0 . |
.. _ - Do something with
Lng 7t > 1+ acid_length t < the head of the list

and the recursive call

 Can we factor out that pattern using first-class functions?

CIS120

Abstracting with respect to Base

let rec helper (base : bool) (1 : bool list) : bool =
begin match 1 with

| [] -> base
| h :: t -> h || helper base t
end

let exists (1 : bool list) = helper false 1

let rec helper (base : int) (1 : acid list) : int =
begin match 1 with

| [] -> base
| h :: t -> 1 + helper base t
end

let acid_length (1 : acid list) = helper 0 1

CIS120

Abstracting with respect to Combine

let rec helper (combine : bool -> bool -> bool)
(base : bool) (1 : bool 1list) : bool =
begin match 1 with

| [] -> base
| h :: t -> combine h Chelper combine base t)
end

let exists (1 : bool list) =
helper (fun Ch:bool) (acc:bool) -> h || acc) false 1

let rec helper (combine : acid -> int -> int)
(base : int) (1l : acid 1ist) : int =
begin match 1 with

| [] -> base
| h :: t -> combine h Chelper combine base t)
end

let acid_length (1 : acid list) =
helper (fun Ch:acid) (acc:int) -> 1 + acc) 0 1

CIS120

Making the Helper Generic

let rec helper (combine : ‘a -> ‘b -> ‘b)
(base : ‘b) (1 : ‘a list) : ‘b =
begin match 1 with

| [] -> base
| h :: t -> combine h Chelper combine base t)
end

let exists (1 : bool list) =
helper (fun Ch:bool) (acc:bool) -> h || acc) false 1

let rec helper (combine : ‘a -> ‘b -> ‘b)
(base : ‘b) (1 : ‘a list) : ‘b =
begin match 1 with

| [] -> base
| h :: t -> combine h Chelper combine base t)
end

let acid_length (1 : acid list) =
helper (fun (h:acid) (acc:int) -> 1 + acc) 0 1

CIS120

List Fold

let rec fold (combine: 'a -> 'b -> 'b)
(base:'b) (1 : 'a list) : 'b =
begin match 1 with

| [] -> base
| X :: t -> combine x (fold combine base t)
end

let exists (1 : bool 1list) : bool =
fold (fun Ch:bool) (acc:bool) -> h || acc) false 1

let acid_length (1 : acid list) : int =
fold (fun (h:acid) (acc:int) -> 1 + acc) 0 1

- fold (a.k.a. Reduce)

— Like transform, foundational function for programming with lists
— Captures the pattern of recursion over lists
— Also part of OCaml standard library (L1st.fold_right)

— Similar operations for other recursive datatypes (fold_tree)
CIS120

CIS120

How would you rewrite this function

let rec sum (1 : int list) : int =
begin match 1 with

[] -> 0

| h ::

end

t -> h + sum t

using fold? What should be the arguments for base and

combine?

1. combine is:

base is:

2. combine is:

base is:

3. combine is:

base is:

1. sum can’t be written by with fold. Answer: 2

(fun Ch:int) (acc:int) -> acc + 1)
0

(fun Ch:int) (acc:int) -> h + acc)
0

(fun Ch:int) (acc:int) -> h + acc)
1

How would you rewrite this function

let rec reverse (1 : int list) : int list =
begin match 1 with
I -> [
| h :: t -> reverse t @ [h]
end

using fold? What should be the arguments for base and combine?

1. combine is: (fun (h:int) (acc:int 1list) -> h :: acc)
base is: 0

2. combine is: (fun (h:int) (acc:int 1list) -> acc @ [h])
base is: 0

3. combine is: (fun (h:int) (acc:int 1list) -> acc @ [h])
base is: []

1. reverse can’t be written by with fold. Answer: 3

CIS120

Functions as Data

We’ve seen a number of ways in which functions can be
treated as datain OCaml

Present-day programming practice offers many more
examples at the “small scale”:

— objects bundle “functions” (a.k.a. methods) with data

— iterators (“cursors” for walking over data structures)

— event listeners (in GUIs)
— etc.

The idiomis useful at the “large scale”: Google’s MapReduce
— Framework for transforming (mapping) sets of key-value pairs
— Then “reducing” the results per key of the map

— Easily distributed to 10,000 machines to execute in parallel!

Are you familiar with the idea of a set from
mathematics?

1. yes
2. noO

In math, we typically write sets like this:
@ {1,2,3} {true false}
with operations:
SUT for unionand
ST forintersection;
we write x €S for
“xis a member of the set §”

CIS120

A set is an abstraction

e Asetis acollection of data

— we have operations for forming sets of elements
— we can ask whether elementsare in a set

 Asetis alotlike a list, except:
— Order doesn't matter j|.

An element’s presence or absence in the

— Duplicatesdon't matter | setisall that matters...

— Itisn't built into OCaml|

e Sets show up frequently in applications

— Examples: set of studentsin a class, set of coordinatesina
graph, set of answersto a survey, set of datasamples from
an experiment, ...

Abstract type: set

A BST can implement (represent) a set

— there is a way to represent an empty set (Empty)

— there is a way to list all elements contained in the set
(inorder)

— there is a way to test membership (lookup)
— could define union/intersection (insert and delete)

Order doesn't matter

— We create BSTs by adding elements to an empty BST

— The BST data structure doesn’t remember what order
we added the elements

Duplicates don't matter

— Our implementation doesn’t keep track of how many
times an element is added

— BST invariant ensure that each node is unique

BSTs are not the only way to implement
sets

1]

Three Example Representations of Sets

concrete representation

Alternate representation:
reverse sorted array with
index to next slot.

!
3::0::1::[] 3110 XX

Alternate representation:
unsorted linked list.

concrete representation

concrete representation

® ®
© ©
® ®

Abstract types (e.g. set)

An abstract type is defined by its interface
and its properties, not its representation.

Interface: defines operations on the type

There is an empty set

There is a way to add elements to a set to make a bigger
set

There is a way to list all elements in a set
There is a way to test membership

Properties: define how the operations
interact with each other

Elements that were added can be found in the set

Adding an element a second time doesn’t change the
elements of a set

Adding in a different order doesn’t change the elements
of a set

Any type (possibly with invariants) that
satisfies the interface and properties can be
a set.

concrete representation

®
©
®

The set interface in OCaml (a signature)

mod

end

ule type SET = sig

Type declaration has no
“body” — its representation

type 'a set «

val empty

val add

val member

val equals :
val set_of_list :

Q QOO0 Q QO

is abstract!
set
-> 'a set -> 'a set
-> 'a set -> bool
set -> 'a set -> bool
list -> 'a set

Keyword ‘val’ names values
that must be defined and

their types.

Implementing sets

There are many ways to implement sets.
— lists, trees, arrays, etc.

How do we choose which implementation?

— Depends on the needs of the application...
— How often is ‘member’ used vs. ‘add’ or ‘remove’?
— How big will the sets need to be?

Many such implementations are of the flavor
“asetis a...withsomeinvariants”

— Asset is a list with no repeated elements.

— A set is a tree with no repeated elements

— Aset is a binary search tree

— Asset is an array of bits, where 0 = absent, 1 = present

How do we preserve the invariants of the implementation?

A module implementsan interface

* Animplementation of the set interface will look like this:

Name of the module

Signature that it implements

/

#
module ULSet : SET = struct
E* implementations of all the operations *)

ena

Implementthe set Module

module BSTSet : SET = struct

type 'a tree =
| Empty
| Node of "a tree * 'a * 'a tree

, , Module must define the
type 'a set = 'a tree - type declared in the

signature

let empty : 'a set = Empty

ena

 The implementation has to include everything promised by the interface

— It can contain more functions and type definitions (e.g. auxiliary or helper
functions) but those cannot be used outside the module

— The types of the provided implementations must match the interface

Another Implementation

module ULSet : SET =
struct

A different definition for
type 'a set = 'a list < the type set

let empty : 'a set = []

end

Testing (and using) sets

e To use thevalues definedin the set module use the “dot”
syntax:
ULSet .<member>

* Note: Module names must be capitalized in OCaml

let s1 = ULSet.add 3 ULSet.empty
let s2 = ULSet.add 4 ULSet.empty
let s3 = ULSet.add 4 sl

let test () : bool = (ULSet.member 3 sl1)
;5 run_test "ULSet.member 3 sl1" test

let test () : bool = (ULSet.member 4 s3)
;5 run_test "ULSet.member 4 s3" test

Testing (and using) sets

* Alternatively,use “Open” to bringall of the names defined in
the interface into scope.

;3 open ULSet

let sl = add 3 empty
let s2 = add 4 empty
let s3 = add 4 sl

let test () : bool = (member 3 sl)
;5 run_test "ULSet.member 3 sl1" test

let test () : bool = (member 4 s3)
;5 run_test "ULSet.member 4 s3" test

Abstract types

BIG IDEA: Hide the concrete representation of a type
behind an abstract interface to preserve invariants.

* Theinterface restricts how other parts of the program can
interact with the data.

— Clients must only use what is declared in the SET interface

* Benefits:
— Safety: The other parts of the program can’t break any invariants

— Modularity: It is possible to change the implementation without
changing the rest of the program

Does this code type check?

;; open BSTSet
let s1 : int set = Empty

1. yes
2. no

Answer: no, the Empty data constructor is not
available outside the module

CIS120

