Programming Languages
and Techniques
(C1S120)

Lecture 12
February 10t 2016

Finite Maps; Partiality and Option Types

Announcements

* Dr. Zdancewic will hold class on Friday

— bring your clickers

e Midterm 1

— Next Tuesday evening, 6:15PM

— Register by Sunday if you need the make-up exam
— Covers lecture material through TODAY (Ch. 10)

— Review materials (old exams) on course website

— May bring 1 single-sided handwritten "cheat
sheet" to the exam, make sure your name is on it

Finite Map signature

module type MAP = sig

type ('k,'v) map

val empty : ("k,"'v) map

val add 'k > 'v > ('k,'v) map -> ('k,"'v) map
val remove : 'k -> ('k,'v) map -> ('k,"'v) map
val mem 'k > ('k,"'v) map -> bool

val get 'k > ('k,"'v) map -> 'v

val entries : ('k,'v) map -> ('k * 'v) list
val equals : ('k,'v) map -> ('k,'v) map -> bool

end

.ml and .mli files

* You’'ve already been using signatures and modulesin OCaml.

* Aseriesof typeand val declarations storedin a file foo.ml1
is considered as defining a signature FOO

* Aseries of top-level definitions stored in a file foo.ml is
considered as defininga module FOO

//;;;Jnﬁ

type t
val z : t
val f : t -> 1int

foo.ml

~

type t = int

let z : t =0

let f (x:t) : int =
X + 1

test.ml

;5 open Foo
;5 print_int
(Foo.f Foo.z)

\\\\‘ Files

module type FOO = sig
type t
val z : t
val f : t -> int
end

module Foo : FOO = struct
type t = int
let z : t =0
let f (x:t) : int =
X + 1
end

module Test = struct
;3 open Foo
;5 print_int
(Foo.f Foo.z)
end

/

Summary: Abstract Types

Different programming languages have different ways of
letting you define abstract types

At a minimum, this means providing:
— A way to specify (write down) an interface

— A means of hiding implementation details (encapsulation)

In OCaml:

— Interfaces are specified using a signature or interface

— Encapsulation is achieved because the interface can omit information
* type definitions
* names and types of auxiliary functions

— Clients cannot mention values or types not named in the interface

Which of these is a function that calculates the

maximum value in a (generic) list:

4

begin match 1 with
0 -> [

end

let rec list_max (1l:'a list) : ’a

| h :: t -> max h (list_max t)

fold max 0 1

let rec list_max (1l:'a list) : ’a

begin match 1 with

end

let rec list_max (1:’a list) : ‘a

| h :: t -> max h (list_max t)

. None of the above

Answer: 4

Quiz answer

e list_ maxisn’t defined for the empty list!

let rec list_max (1:'a list) : ’a =
begin match 1 with
| [] -> failwith “empty 1ist”
| [h] -> h
| h::t -> max h (list_max t)
end

(* INCORRECT! *)
let list_max (l:'a list) : ’a =
begin match 1 with
| [] -> failwith “empty 1list”
| h::t -> fold max h t
end

CIS120

Client of list._max

(* string_of_max calls list_max *)
let string_of_max (x:int list) : string =
string_of_int (list_max x)

* Oops! string_of_maxwillfail if given []

* Notso easy todebugif string_of_maxiswritten by one
person and L1st_max iswritten by another.

* Interface of list_maxis not very informative
val list_max : int list -> int

CIS120

Dealing with Partiality®

*A function is said to be partial if it is not defined for all inputs.

Solutions to Partiality: Option 1

 Abort the program: failwith “an error
message”

— Wheneveritis called, failwith haltsthe programand
reports the error message it is given.
* This solutionis appropriate whenever you know that
a certain case is impossible

— The compilerisn’t smart enough to figure out that the case
is impossible...

— Often happenswhen thereis an invarianton a
datastructure

— failwithisalso useful to “stub out” unimplemented
parts of your program.

Solutions to Partiality: Option 2

* Returnadefault or error value
— e.g. define 1list max [] tobe -1

— Error codes used often in C programs
— hull used often in Java

* But...

— What if -1 (or whatever default you choose) really is the maximum
value?

— Can lead to many bugs if the default or error value isn’t handled
properly by the callers.

— IMPOSSIBLE to implement generically!

* There is no way to generically create a sensible default value for every
possible type

* Sir Tony Hoare, Turing Award winner and inventor of null calls it his
“billion dollar mistake”!

 Defaultsshould be avoided if possible

Solutions to Partiality: Option 3

Option Types

 Definea generic datatype of optional values:

type 'a option =
| None
| Some of 'a

A “partial” function returnsan option

let 1list_max (l:1ist) : int option = ..

e Contrastthiswith “null”, a “legal” return value of any type

— caller can accidentally forget to check whether null was used; results
in NullPointerExceptions or crashes

CIS120

Example: list_max

e A functionthatreturnsthe maximum value of a list as an
option (Noneif the list is empty)

let list_max (1:'a 1list) : 'a option =
begin match 1 with
| [] -> None
| x::tl -> Some (fold max x tl)
end

CIS120

Revised client of list max

(* string_of_max calls list_max *)
let string_of_max (l:int list) : string =
begin match (list_max 1) with
| None -> “no maximum”
| Some m -> string_of_int m
end

« string_of_max will neverfail

 The type of list_max makes it explicit that a client must check
for partiality.

val list_max : int list -> int option

CIS120

What is the type of this function?

4

‘a list -> ‘a list
‘a list -> ‘b option
‘a list -> ‘a option

. None of the above

let head (x: ______) o =
begin match x with
| [] -> None
| h :: t -> Some h
end
‘alist->‘a

Answer: 4

What is the value of this expression?

let head (x: ‘a 1list) : ‘a option =
begin match x with
| [] -> None
| h :: t -> Some h
end in

head [[1]]

1

Some 1

Some [1]

Answer: 4

1
2
3. [1]
4
5

. None of the above

What is the value of this expression?

let head (x: ‘a 1list) : ‘a option =
begin match x with

| [] -> None
| h :: t -> Some h
end 1in

[head [1]; head []]

(1,;0]
1

[None; None]

Answer: 3

1
2
3. [Some1; None]
4
5

None of the above

