Programming Languages
and Techniques
(C1S120)

Lecture 19
February 26, 2016

GUI Library Design
Chapter 18

Are you here today?

1. Yes

Announcements

HWO05: GUI programming is available
— Due: THURSDAY March 3rd at 11:59:59pm

— Graded manually
e Submission only checks for compilation, no auto tests
* Won’t get scores immediately
* Only LAST submission will be graded

— This projectis challenging:
* Requires working with multiple levels of abstraction.
* Managing state in the paint program is a bit tricky.

Building a GUI library & application

[NON | X OCaml graphics

IO Point| |© Linel IO Ellipse| IO Textl Thick 1ines| |Und0| |Quit|

E—)OS EE 008 frer o] |

Text buffer:|CIS 120

putting objects to work

Interfaces: Project Architecture®

*Note: Subsequent program snippets are color-coded according to this diagram.

Application \.— --- :
Paint

’ Eventloop Widget
Gctx

OCaml’s Graphics Module (graphics.cma)

Native
graphics
library

—

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

GUI terminology — Widget*

Basic element of GUIs : buttons, checkboxes, windows,
textboxes, canvases, scrollbars, labels

* All have a position onthe screen and know how to display
themselves
 May be composed of other widgets (for layout)

Hello World

*Each GUI library uses its own naming convention for what we call “Widget”. Java’s Swing calls
them “Components”; iOS UIKit calls them “UlViews”; WINAPI, GTK+, X11’s widgets, etc....

Widgets Pictorially

(* Create some simple label widgets *)
let 11 = label "Hello"
let 12 = label "World"
(* Compose them horizontally,

swdemo.ml

adding some borders *)

let h = border Chpair (border 11)
Chpair (space (10,10)) (border 12)))
border
v
hpair
___4::f’;;?_<:;‘\s¥ Hello World
border hpair
v « >
label space border On the screen
v
Widget tree label

GUI terminology - Eventloop

* Main loop of any GUI application

let run (w:widget) : unit =
let g = Gectx.top_level 1in
Gctx.open_graphics ();
let rec loop () : unit =
Graphics.clear_graph ();

Graphics.synchronize (); (* force window update *)

wait for user input (mouse movement, key press)
inform w about the input so widgets can react to it;
loop (O (* tail recursion! *)

loop ()

1N

Takes “top-level” widget w as argument. That widget contains all others in the
application.

Drawing: Containers

Container widgets propagate repaint commands to their children:

borfier .repaint g

hp&é’:s repaint g1 Hello World
border hpair Thxepaint g2
Iai’el space .repaint g3

v

label |, .repaint g4

Challenge: How can we make it so thatthe functionsthatdrawwidgets
in different places onthe window are location independent?

Challenge: Widget Layout

 Widgetsare “things drawn on the screen”. How to make them
location independent?

* |dea: Use a graphics context to make drawing relative to the
widget’s current position

Application \

: Paint.ml

P

g—

The graphics
context
isolates the
widgets from
the Graphics
module.

GUI Eventloop.m Widget.ml

Library
Getx.ml

B

Native
graphics
library

- OCaml’s Graphics Module (graphics.cma)

12

GUI terminology — Graphics Context

* Wraps OCaml Graphics library; puts drawing operations “in

context”

* Translates coordinates
— Flips between OCamland
“Standard coordinates” so origin
is top-left
— Translatescoordinatesso all
widgets can pretendthat

— foregroundcolor
— line width

13

Contextualizes graphics drawing operations

Graphics Contexts

let top = Gctx.top_level
— 5
T [c1s 120
dy

\4 let nctx = Gctx.translate top (dx,dy)
CIS 120

draw_string top (0,10) "CIS 120";
draw_string nctx (0,10) "CIS 120"

repaint = fun g -> draw_rect g (0,0) (20,20);
draw_string g (0,10) "CIS 120"

17

Module Gctx

(** The main (abstract) type of graphics contexts. *)
type gctx

(** The top-level graphics context *)
val top_level : gctx

(** A widget-relative position *)
type position = int * int

(** Display text at the given position *)

val draw_string : gctx -> position -> string -> unit
(** Draw a line between the two specified positions *)
val draw_line : gctx -> position -> position -> unit

(** Produce a new gctx shifted by (dx,dy) *)

val translate : gctx -> int * int -> gctx
(** Produce a new gctx with a different pen color *)

val with_color : gctx -> color -> gctx

Building blocks of GUI applications

see simpleWidget.ml

Simple Widgets

(* An 1interface for simple GUI widgets *)

type widget
repaint
size

ks

val label

val space

val border
: widget -> widget -> widget
: int * int -> (Gctx.gctx -> unit) -> widget

val hpair
val canvas

= {

. Gctx.getx -> unit;
. unit -> (int * 1int)

: string -> widget
: int * int -> widget

widget -> widget

simpleWidget.mli

* Youcan ask a simple widget to repaint itself.
* Youcan ask a simple widget to tell you its size.

Both operations are relative to a graphics context

swdemo.ml

DO I T L N ————

|Hello World I

21

Widget Examples

simpleWidget.ml

(* A simple widget that puts some text on the screen *)

let label (s:string) : widget =

{
repaint = (fun (g:Gctx.gctx) -> Getx.draw_string g (0,0) s);
size = (fun () -> Gctx.text_size s)

}

simpleWidget.ml

(* A "blank" area widget -- it just takes up space *)
let space ((X,y):int*int) : widget =
{
repaint = (fun (_:Gectx.gctx) ->));
size = (fun O -> x,y))
}

The canvas Widget

* Region of the screen that can be drawn upon
* Has a fixed width and height

 Parameterized by a repaint method
— Usethe Gctx drawingroutinesto draw on the canvas

simpleWidget.ml

let canvas ((w,h):int*int) (repaint: Gctx.gctx -> unit) : widget =

{

repaint = repaint;
size = (fun O -> (w,h))

¥

Containers and Composition

The Border Widget Container

0123 .. (w’s width + 4)- 1

0

translate

W
the Gctx '

2
3

WS
height

(w’s height +4)-1

w’s width
let b = border w

 Drawsaone-pixel wide border around contained widget w

* b’s size is slightly larger than w’s (+4 pixels in each dimension)
* b’s repaint method must call w’s repaint method

* When b asks w to repaint, b must translate the Gcetx.t to (2,2) to account for the
displacement of w from b’s origin

The Border Widget

simpleWidget.ml

{

let (width,height) =
let x = width + 3 in
let y = height + 3 in

w.repaint gw);

size = (fun QO >
let (width,height) =
(width+4, height+4))
¥

let border (w:widget) :widget =

repaint = (fun (g:Gctx.gctx) ->

w.size () 1n

Getx.draw_line g (0,0) (x,0);
Gectx.draw_line g (0,0) (0,y);
Getx.draw_line g (x,0) (Xx,y);
Getx.draw_line g (0,y) (x,y);
let gw = Gectx.translate g (2,2) in

w.size) 1n

=

=

Draw the border

T

Display the interior

26

The hpair Widget Container

translate Gcetx
to repaint w2

wl
h's

w2 Pheight

h’s width
« let h = hpair wl w2
* Createsa horizontally adjacent pair of widgets

* Alignsthem by theirtop edges
— Must translate the Getx when repainting the right widget

e Size is the sum of their widthsand max of their heights

The hpair Widget

simpleWidget.ml

let hpair (wl: widget) (W2: widget) : widget =
{
repaint = (fun (g: Gctx.gctx) ->
let (x1, _) = wl.size (O in begin
wl.repaint g;
wZ2.repaint (Gctx.translate g (x1,0))
(* Note translation of the Gctx *) }
end);
size = (fun O > Translate the Gctx
let (x1, yl1) = wl.size () 1in to shift w2’s position
let (x2, y2) = w2.size () 1n relative to widget-local
(x1 + x2, max yl y2)) origin.

28

Widget Hierarchy Pictorially

swdemo.ml

(* Create some simple label widgets *)

let 11 = label "Hello"
let 12 = label "World"

(* Compose them horizontally, adding some borders *)

let h = border Chpair (border 11)
Chpair (space (10,10)) (border 12)))

border
v
hpair
e Hello World
border hpair
label space border On the screen

v

Widget tree label

Drawing: Containers

Container widgets propagate repaint commands to their children:

|
border | .repaint g

pair |.repaint gl Hello World
xepaint g2
.repaint g3
label |, .repaint g4
Widget tree gl = Getx.translate g (2,2) On the screen

g2 = Gcetx.translate gl (hello_width,0)
g3 = Gcetx.translate g2 (space_width,0)
g4 = Gcetx.translate g3 (2,2)

