Programming Languages
and Techniques
(C1S120)

Lecture 21
March 2" 2016

GUI: notifiers
Transition to Java

What is the type of xs ?

let r = {contents = 3}
let xs = [(fun () -> r.contents <- 5);
(fun () -> print_int r.contents)]

. unit -> unit

. 1nt -> unit

. (unit -> unit) list
. (unit -> int) list
. (1nt -> unit) list
. unit -> unit list

SoOulph WN K-

CIS120

What should go in the blank to make the console print "5" ?

let rec iter (f:'a -> unit)(xs:'a list):unit=
begin match xs with
> O
|l h:: t->({(f h; itter f t)
end
let r = {contents = 3}
let xs = [(fun () -> r.contents <- 5);
(fun () -> print_int r.contents)]

1. fun () -> print_int 5
2. fun OO -> O

3. fun f > f O

4. fun £ > f

CIS120

How far are you on HW 57?

Haven’t started yet

Working on Tasks 1-4 (layout, drawing)
Working on Checkboxes

Working on Something Cool

I’'m donel¢

R

CIS120

How to react to eventsina modular way?

Listeners

widget.ml

type event_listener = Gctx.gctx -> Gectx.event -> unit

(* Performs an action upon receiving a mouse click. *)
let mouseclick_listener (action: unit -> unit)
. event_listener =
fun (g:Gctx.gctx) (e: Gectx.event) ->
1f Gctx.event_type e = Gctx.MouseDown
then action ()

Event Listeners

Problem: Widgets may want to react to many different sorts
of events

Example: Button

— button click: changes the state of the paint program and button label
— mouse movement: tooltip? highlight?

— key press: provide keyboard access to the button functionality?

These reactions should be independent

— Each sort of event handled by a different event listener
(i.e. a first-class function)

— Reactive widgets may have several listeners to handle a triggered
event

— Listeners react in sequence, all have a chance to see the event

Solution: notifier

Listeners and Notifiers Pictorially

hpé’g
b

order hpair
!
label space borde
notifie

/‘

NN
11 ::12 :: Bx:: (]

Widget tree

User clicks,

generating
event e

/

Hello

Wi Ld

listeners

label

On the screen

Notifiers

* A notifieris a container widgetthat adds event listenersto a
nodein the widget hierarchy

— Note: this way of structuring event listeners is based on Java’s Swing
Library design (we use Swing terminology).

The event listeners “eavesdrop” on the events flowing through the
node

— The event listeners are stored in a list

— They react in order, if one of them handles the event the later ones do
not hear it

— If none of the listeners handle the event, then the event continues to
the child widget

List of event listeners can be updated by using a notifier _controller

Notifiers and Notifier Controllers

widget.ml

type hotifier_controller =
{ add_listener : event_listener -> unit }

let notifier (w: widget) : widget * notifier_controller =
let listeners = { contents = [] } in
{ repaint = w.repaint;
handle =

(fun (g: Gectx.gctx) (e: Getx.event) ->
List.i1ter (fun h -> h g e) listeners.contents;

w.handle g e);

size = W.Slze Loop through the list
I of listeners, allowing
1 add_event_listener = each one to process
fun (newl: event_listener) -> the event. Then pass
LLEEEner s ConiEimes < the event to the child.
newl :: listeners.contents

The notifier_controller allows
new listeners to be added to
the list.

Buttons (at last!)

widget.ml

(* A text button *)
let button (s: string) : widget
* label_controller
* notifier_controller =

let (w, 1c) = label s in
let (W', nc) = notifier w in
(w', 1lc, nc)

A buttonwidgetisjust a label wrapped in a notifier

 Add a mouseclick_listenerto the buttonusingthe
notifier_controller

* (Foraestheticpurposes,youcan but a borderaround the
button widget.)

Changingthe label on a buttonclick

Goodbye OCaml...
...hello Javal

CIS 120 Overview

* Declarative (Functional) programming

— persistent data structures
— recursion is main control structure
— frequent use of functions as data

* |mperative programming

— mutable data structures (that can be modified “in place”)

— jteration is main control structure

* Object-oriented (and reactive) programming

CIS120

— mutable data structures / iteration
— heavy use of functions (objects) as data

— pervasive “abstraction by default”

14

Java and OCaml together

Guy Steele, one of the
principal designers of Java

Xavier Leroy, one of the principal
designers of OCaml

CIS120 16

Recap: The Functional Style

* Coreideas:
— immutable (persistent / declarative) data structures
— recursion (and iteration) over tree structured data
— functions as data
— generic types for flexibility (i.e. ‘a list)
— abstract types to preserve invariants (i.e. BSTs)

— simple model of computation (substitution)

* Goodfor:
— elegant descriptions of complex algorithms and/or data
— small-scale compositional design
— “symbol processing” programs (compilers, theorem provers, etc.)

— parallelism, concurrency, and distribution

Functional programming

OCaml

Immutable lists primitive,
tail recursion

Datatypes and pattern
matching for tree structured
data

First-class functions,
transform and fold

Generic types

Abstract types through
module signatures

*until recently (Java 8)

Java (and C, C++, C#)

No primitive data structures,
no tail recursion

Trees must be encoded by
objects, mutable by default

No first-class functions.* Must
encode first-class computation
with objects

Generic types

Abstract types through
public/private modifiers

OCaml vs. Java for FP

type 'a tree =
| Empty
| Node of ('a tree) * 'a * ('a tree)

let is_empty (t:'a tree) : bool =
begin match t with
| Empty -> true
| Node(_, ,) -> false
end

let t : int tree = Node(Empty,3,Empty)
let ans : bool = is empty t

CIS120

interface Tree<A> {
public boolean isEmpty();
}
class Empty<A> implements Tree<A> ({
public boolean isEmpty () {
return true;
}
}

class Node<A> implements Tree<A> {
private final A v;
private final Tree<A> 1t;
private final Tree<A> rt;

Node(Tree<A> 1lt, A v, Tree<A> rt) {
this.lt = 1lt; this.rt = rt; this.v = v;
}

public boolean isEmpty() {
return false;

}
}

class Program {
public static void main(String[] args) {
Tree<Integer> t =
new Node<Integer>(new Empty<Integer>(),
3, new Empty<Integer>());
boolean ans = t.isEmpty();

More FP

TY2ocaml

= Type inference

= Modules and support for
large scale programming

= Objects (real, but different)

= Many other extensions

= Growing ecosystem

= Real World OCaml, OPAM

CIS120

Microsoft* .
OO Visual F#

Most similar to OCaml,
Shares libraries with C#

Haskell (CIS 552)
Purity and laziness

Swift
I0S programming

Scala
Java / OCaml hybrid

20

Recap: Imperative programming

e Coreideas:

computation as change of state over time

distinction between primitive and reference values
aliasing

linked data-structures and iteration control structure
generic types for flexibility (i.e. @ queue)

abstract types to preserve invariants (i.e. queue invariant)

Abstract Stack Machine model of computation

e Good for:

numerical simulations

implicit coordination between components (queues, GUI)

Imperative programming

OCaml

No null. Partiality must be

made explicit with options.

Codeis an expression that
has a value. Sometimes
computing that value has
other effects.

References are immutable
by default, must be
explicitly declared to be
mutable

Java (and C, C++, C#)

Null is contained in (almost)
every type. Partial functions
can return null.

Codeis a sequence of
statements that do
something, sometimes
using expressionsto
compute values.

References are mutable by
default, must be explicitly
declared to be constant

Explicit vs. Implicit Partiality

OCaml variables

Cannot be changed once created,
must use mutable record

type 'a ref = { mutable contents: 'a }
let x = { contents = counter () }
;5 X.contents <- counter ()

Cannot be null, must use options

let y = { contents = Some (counter ())}

;3 Y.contents <- None

Accessing the value requires
pattern matching

;5 match y.contents with

| None -> failwith "NPE"

| Some ¢ -> c.inc ()

Java variables

Can be assigned to after initialization

Counter x = new Counter (Q);

x = new Counter Q;

Can always be null

Counter y = new Counter Q);

y = null;

Check for null is implicit whenever a
variable is used

y.incQ);

If null is used as an object
(i.e. with a method call) then a
NullPointerException occurs

23

The Billion Dollar Mistake

Sir Tony Hoare, QCon, London 2009

CIS120

24

