Programming Languages
and Techniques
(C1S120)

Lecture 31
April 61, 2016

/0
Chapter 28

Poll

Did you finish HW 07 PennPals?

1. Yes!

2. lturneditinontime, butthereare a few things
| couldn't figure out

3. I'mplanningto use the late period for this
assignment

Announcements

« HWS: Spellchecker

— Available now
— Due: Tuesday, April 12th at midnight

— Parsing, working with 1/0, more practice with collections

/O Streams

 The stream abstraction represents a communication channel
with the outside world.

— can be used to read or write a potentially unbounded number of data
items (unlike a list)

— data items are read from or written to a stream one at a time

* ThelJaval/O library uses subtypingto provide a unified view
of disparate data sources and sinks.

input streams output streams

...the quick brown fox... ..au clair de la lune...

Application

...3.14159265358979... ..ACCTGAACTCAT...

Low-level Streams

At the lowest level, a stream is a sequence of binary numbers

The simplest |0 classes break up the sequence into 8-bit
chunks, called bytes. Each byte correspondsto an integerin
the range 0 — 255.

InputStreamand OutputStream

Abstract classes that provide basic operations for the Stream class hierarchy:

int read QO; // Reads the next byte of data
void write (int b); // Writes the byte b to the output

These operations read and write int values that represent bytes
range 0-255 represents a byte value

-1 represents “no more data” (when returned from read)

e java.io provides many subclasses for various sources/sinks of data:

files, audio devices, strings, byte arrays, serialized objects

Subclasses also provides rich functionality:

encoding, buffering, formatting, filtering

Binary |O example

InputStream fin = new FileInputStream(filename);

int[] data = new int[width][height];
for (int 1=0; 1 < data.length; 1++) {
for (int j=0; j < data[@].length; j++) {
int ch = fin.read();
if (ch == -1) {
fin.close();
throw new IOException("File ended early");
}
data[j][1] = ch;
Iy
ks

fin.close();

BufferedInputStream

e Readingone byte at a time can be slow!

 Each timeastreamis read there s a fixed overhead, plus time
proportional to the number of bytes read.

disk -> operating system ->JVM -> program
disk -> operating system -> JVM -> program
disk -> operating system ->JVM -> program

e ABufferedInputstream presentsthesame interfaceto
clients, but internally reads many bytes at once into a buffer
(incurring the fixed overhead only once)

disk -> operating system ->>>>JVM -> program
JVM -> program
JVM -> program
JVM -> program

Buffering Example

FileInputStream finl = new FilelInputStream(filename);
InputStream fin = new BufferedInputStream(finl);

int[] data = new int[width][height];
for (int 1=0; 1 < data.length; i++) {
for (int j=0; j < data[@].length; j++) {
int ch = fin.read(Q);
if (ch = -1) {
fin.close();
throw new IOException("File ended early");
ks
data[j3][1] = ch;
¥
ks

fin.close();

PrintStream Methods

PrintStream adds buffering and conversion
methods to OutputStream

void println(int 1i); // writei followed by a newline
void println(String s); // writes followed by a newline
void println(); // write a newline to the stream
void print(String s); // write s without terminating the line
(output may not appear until the stream is flushed)
void flush(); // actually output characters waiting to be sent

* Note the use of overloading: there are multiple methods called println

— The compiler figures out which one you mean based on the number of arguments,
and/or the static type of the argument you pass in at the method’s call site.

— The java /0 library uses overloading of constructors pervasively to make it easy to “glue
together” the right stream processing routines

Output Example

OutputStream out = new FileOutputStream("F");
PrintStream p = new PrintStream(out);
p.println("P5");
p.println("512 512");
p.println("255");
for (int 1=0; i<HEIGHT; 1i++) {

for (int j=0; j<WIDTH; j++) {

p.write(datal[j][1]);

¥

5
p.close();

The Standard Java Streams

java.lang.System providesan InputStreamand two standard
PrintStreamobjectsfor doing consolel/O.

System.out
System.1in

standard input (keyboard)

| > Application

standard output (display)

standard error (display)

System.err

Note that System. in, for example, is a static member of the class System — this means that the field “in” is
associated with the class, not an instance of the class. Recall that static members in Java act like global variables.

Character based 10

A character stream is a sequence of 16-bit binary numbers

593 46,762
\u0251 \UB6AA
Ial ::
o
=4V3

The character-based 10 classes break up the sequence into 16-bit
chunks, of type char. Each character correspondsto a letter
(specified by a character encoding).

Reader and Writer

Similarto the InputStream and OutputStream classes, including:

int read (); // Reads the next character
void write (int b); // Writes the char to the output

These operationsread and write int valuesthat represent unicode characters
— read returns an integer in the range 0 to 65535 (i.e. 16 bits)
— value -1 represents “no more data” (when returned from read)

— requires an “encoding” (e.g. UTF-8 or UTF-16, set by a Locale)

Like byte streams, the library provides many subclasses of Reader and Writer
Subclasses also provides rich functionality.

— use these for portable text I/O

Gotcha: System.in, System.out, System.err are byte streams
— So wrap in an InputStreamReader / PrintWriter if you need unicode console I/O

PrintStream vs. Writer

PrintStream p = new PrintStream(new FileOutputStream("outl"));
Writer w = new FileWriter("out2");

Which of these will produce the same output file?

1. p.print(120);
w.write(120);

2. |p.print("120");
w.write("120");

4. Both

5. None

Answer: 2. (The print(int) method converts ints to text in the first example)

Text 1O Example: Histogram.java

A design exercise usingjava.io and
the generic collection libraries

Problem Statement

Write a program that, given a filename for a text file as input,
calculates the frequencies (i.e. number of occurrences) of each
distinct word of the file. The program should then print the
frequency distribution to the console as a sequence of “word:
freq” pairs (one per line).

Histogram result:

The : 1 each : 1 line : 2 should : 1
Write : 1 file : 2 number : 1 text : 1
a:4 filename : 1 occurrences : 1 that : 1
as: 2 for:1 of : 4 the : 4
calculates : 1 freqg:1 one:1 then : 1
command : 1 frequencies : 1 pairs : 1 to:1
console : 1 frequency : 1 per : 1 word : 2
distinct : 1 given : 1 print : 1

distribution : 1 i:1 program : 2

e:1 input : 1 sequence : 1

Decompose the problem

e Sub-problems:

1. How do we iterate through the text file, identifying all of
the words?

2. Once we can produce a stream of words, how do we
calculate their frequency?

3. Once we have calculated the frequencies, how do we
print out the result?

* What is the interface between these components?
 Can we testthem individually?

Histogram Structure

Which data structure should we use to store the
histogram?

Set<String>
Set<Integer>
Map<Integer, String>
Map<String,Integer>
Map<String,Set<String>>

woem Y

