Programming Languages
and Techniques
(C1S120)

Lecture 38
April 27, 2016

Semester Recap

FINAL EXAM

* Monday, May 9th, 9-11AM
— LRSM AUD [A - Edson]
— TOWN 100 [Efremkina - Mendivil]
— LEVH 101 [Mitchnick - Taitz]
— SKIR AUD [Tallini - Z]

 Comprehensive exam over course concepts:

— OCaml material (though we won’t worry much about syntax)
— All Java material (emphasizing material since midterm 2)

— all course content
— old exams posted

 Closed book, but:
— One letter-sized, single-sided, handwritten sheet of notes allowed

Review Sessions

* Mock Exam
— Saturday, May 7th
— 2:00pm —4:00pm, answers 4-5PM
— Location: Towne 100

e Review Session

— Saturday, May 7th
— 6:00pm - 8:00pm
— Location: Towne 100

e (Office Hours

— See online Schedule & Piazza

Grade database

Check your scores online for errors

— Homework 1-6, Midterms 1&2, class participation (quizzes), lab
attendance

— HW 7, 8 grades will be entered soon!

Send mail to tas120@seas if you are missing any grades

You are looking at the same database | will use to calculate final
grades...

— Homework 50% (50%/9 per project)
— Labs 6%
— First midterm 12%
— Second midterm 12%
— Final exam 18%

— Class participation 2%

From Day 1

CIS 120is a course in program design ~ "gfun a\ia‘;"ff)':e:c‘gf”gg"u

uses

Practical skills: == fUNCLION i

ASM bime many Displaceable size sbackelse
— ability to write larger (~1000 lines)

Srograms Promise: A challenging
— increased independence but rewarding course.

("working without a recipe")

ode ohjects

. . . heap _ul i'i(l Is Node
— test-driven development, principled Mo inber 'gxopom
. module local
debugging J‘é?pf::pressm Ubllc end
case Ilsbener workspace next variable
: : arra
Conceptual foundations: a corsiricior ass
' 9 funcbions b element
— common data structures and algorithms empgﬂbﬁgavelaurﬁlm b?égsg
— several different programming idioms e ITgure '”"OCa p:iw?abfs:;m
. . callusin ovidesfijg U1
focus on modularity and 9. S matich
ey . counter engb
compositionality Jsugg. e g il e brée =
— derived from first principles throughout e"“";ﬁpbgl bd bam s

mmusbdmerenbp _ whesher - mebhods

It will be fun! aarncs USE O ect e bypes

Which assignment was the most challenging?

OCaml finger exercises
DNA

Sets and Maps
Queues

GUI

Images

Chat

. SpellChecker

. Game

© 0 NDU A WNE

Which assignment was the most rewarding?

OCaml finger exercises
DNA

Sets and Maps
Queues

GUI

Images

Chat

. SpellChecker

. Game

© 0 NDU A WNE

13 conceptsin 37 lectures

Concept: Designh Recipe

Understand the problem

What are the relevant concepts and how do they relate?
Formalize the interface

How should the program interact with its environment?

Write test cases

How does the program behave on typical inputs? On unusual
ones? On erroneous ones?

Implementthe required behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

HOW TO SOLVE IT

G. POLYA

"Solving problems"”, wrote Polya, "is a practical art, like
swimming, or skiing, or playing the piano: You can learn it -
only by imitation and practice."

Testing

Concept: Write tests before coding

"test first" methodology

Examples:

— Simple assertions for declarative
programs (or subprograms)

— Longer (and more) tests for stateful

programs / subprograms
Informal tests for GUIs

(can be automated through tools)

Why?

Tests clarify the specification of the problem

Thinking about tests informs the implementation

TDD circle
of life

N

Refactor

Tests help with extending and refactoring code later

Industry practice

e

%
\y

S

Functional/Procedural Abstraction
Concept: Don't Repeat Yourself! ' ‘
— Find ways to generalize code so @ ﬂ m
it can be reused in multiple situations E ﬁ R

ng e [

—J—-—___—<

Examples: Functions/methods, ol
generics, higher-order functions,
interfaces, subtyping, abstract classes

- Preanse

Pablo Picasso, Bull (plates | - XI) 1945

Why?
— Duplicated functionality = duplicated bugs
— Duplicated functionality = more bugs waiting to happen
— Good abstractions make code easier to read, modify, maintain

Persistent data structures

Concept: Storedatain persistent, i ;

implement computation as tray” Recursion is the natural way of

structures computing a function f(t) when t
belongs to an inductive data type:

1. Determine the value of f for
the base case(s).

2. Compute f for larger cases by
combining the results of
recursively calling f on smaller
cases.

3. Same idea as mathematical

induction (a la CIS 160)

een various parts of the program, all intertaces

Examples: immutable lists anc
images and Strings in Java (HW

Why?

— Simple model of com

— Simple interface:
communication
are explicit)

— Recursion“‘amenable to mathematical analysis (CIS 160/121)
— Plays well with parallelism

Concept: Tree Structured data

Lists (i.e. “unary” trees)
Simple binary trees

Trees with invariants: e.g. bin

search trees

Widget trees: screen layout +

event routing
Swing components

Why? Trees are ubiquitousin

CS!

— file system organization
— languages, compilers

— domain name hierarchy www.google.com

let rec length (1:int list) : int =
begin match 1 with
| [>0
| _::tl -> 1 + length(tl)

lot
e r anglzts Apes
of time

ry

First-class computation

Concept: code is a form of data that can be defined by
functions, methods, or objects (including anonymous ones),
stored in data structures, and passed to other functions

Examples: map, filter, fold (HW4), pixel transformers (HW6),

event listeners (HWS5, 7, 9)

cell.addMouselistener(new MouseAdapter() {
public void mouseClicked(MouseEvent e) {
selectCell(cell);
}

1);
Why?

— Powerful tool for abstraction: can factor out design patterns that differ
only in certain computations

— Heavily used for reactive programming, where data structures store
"reactions"” to various events

Types, Generics, and Subtyping

* Concept: Static type systems prevent errors. Every expression
has a statictype, and OCaml/Java use the types to rule out
buggy programs. Generics and subtyping make types more

flexible and allow for better code reuse.

let rec contains (x:’a) (l:’a list) : bool =
begin match 1 with
| [1 -> false
| h::tl -> x = a ||l (contains x tl)
end

e Why?
— Easier to fix problems indicated by a type error than to write a test
case and then figure out why the test case fails

— Promotes refactoring: type checking ensures that basic invariants
about the program are maintained

Abstract types and encapsulation

 Concept: Type abstraction hides the actual
implementation of a data structure, describes a
data structure by its interface (what it does vs.
how it is represented), supports reasoning with
invariants

 Examples: Set/Map interface (HW3), queues in

/ \;\r]d access concrete representation
, , T " Tabstract view
Invariants are a crucial tool for

reasoning about data structures:

1. Establish the invariants when . . @
lentation without
you create the structure.
2. Preserve the invariants when
_ aboutthe
you modify the structure.

-

Mutable data

Concept: Some data structures are ephemeral: computations
mutate them over time

Examples: queues, deques (HW4), GUI state (HWS5, 9),
arrays (HW 6), dynamic arrays, dictionaries (HW8)

Why?

— Common in OO0 programming, which simulates the transformations that
objects undergo when interacting with their environment

— Heavily used for event-based programming, where different parts of the
application communicate via shared state

— Default style for Java libraries (collections, etc.)

AN

head ’ v 1 /]] v 2

tail g next = . next

A queue with two elements

Sequences, Sets, Maps

Concept: Specific abstract data types of sequences, sets, and
finite maps

Examples: HW3, Java Collections, HW 7, 8
Why?
— These abstract data types come up again and again

— Need aggregate data structures (collections) no matter what language
you are programming in

— Need to be able to choose the data structure with the right semantics

Dictionary
_— kudos only
is a type of
Corrector <« --- you need to write
makes use of provided
FileCorrector ﬂ
SwapCorrector
Levenshtein SpellChecker SpellCheckerRunner
Token T

You run the
spell checker
with this

TokenScanner

Lists, Trees, BSTs, Queues, and Arrays

 Concept: There are implementation trade-offs for abstract types
 Examples:

— Binary Search Trees vs. Lists vs. Hashing for sets and maps
— Linked lists vs. Arrays for sequential data

e Why?
— Abstract types have multiple implementations

— Different implementations have different trade-offs. Need to understand
these trade-offs to use them well.

— For example: BSTs use their invariants to speed up lookup operations

compared to linked lists.
interface Set {boolean isEmpty(); ...}

;head lzj v o 1 v | 2 |
| tail E next ;” . next [E]
w

A queue with two elements

e

-

re————

-

-

re———

Ve —

-

i

—
——

Cwe | 3

-

———

-

-

.

——

G w—

-~
1
i

3
)
.

e —

re——

re————

-

-

Abstract Stack Machine

Concept: The Abstract Stack Machine is a detailed model of
the execution of OCaml/Java

Example: throughoutthe semester!

Why?

To know what your program does without running it

To understand tricky features of Java/OCaml language (aliasing, first-
class functions, exceptions, dynamic dispatch)

To help understand the programming models of other languages:
Javascript, Python, C++, CH, ...

To predict performance and space usage behaviors

Event-Driven programming

Concept: Structure a program by associating "handlers" that
react to program events. Handlers typically interact with the
rest of the program by modifying shared state.

Examples: GUI programmingin OCaml and Java

| NON] %/ OCaml graphics
Why? -

— Practice with reasoning about NN N\N\

shared state
— Practice with first-class functions
— Necessary for programming with :‘"’:

Swing

))) [@ Poirt] [O Lire] [Oeitipss] [OText] [Thisk Tires]

— Common in GUI applications B E0E0E00E[

Text bufferifey, kids |

Why some other language than Java?

* Levelplayingfield for students with varying backgrounds
cominginto the same class

 Two points of comparison allow us to emphasize language-
independent concepts

...but, why specifically OCaml?

“Y2oCaml

Rich, orthogonal vocabulary

 |InJava: int, A[], Object, Interfaces

* In OCaml:
— primitives
— arrays
— objects
— datatypes (includinglists, trees, and options)
— records
— refs
— first-class functions
— abstract types

e All of the above can be implemented in
Java, but untangling various use cases of
objects is subtle

* Concepts (like generics) can be studied in
isolation, fewer intricate interactions with
the rest of the language

Functional Programming

In Java, every reference is mutable and
optional by default

In OCaml, persistent data structures are the
default. Furthermore, the type system keeps
track of what is and is not mutable, and what

is and is not optional

Advantages of immutable/persistent data
structures

— Don't have to keep track of aliasing. Interface to the
data structure is simpler

— Often easier to think in terms of "transforming" data
structures than "modifying" data structures

— Simpler implementation (Compare lists and trees to
queues and deques)

— Powerful evaluation model (substitution + recursion).

WHY DO YOU LIKE FUNCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOES IT ACTUALLY GET YOU?

TAIL. RECURSION 1S
ITS OWN REWARD.

P

ONE DOES NOT SIMPL

M ﬁ A DATASTRUCTURE

Who uses OCaml?

W (¢

=] _\:.'- “ ‘)‘ 1 (r

intel) f E S

QWS facebook @ ~ |ANE STREF]
Ms =
MM

st Google ciTrIx

| v .
S ®

=
N o=

AAAAAAAA

Object Oriented Programming

* Provides a different way of decomposing programs

* Basic principles:
— Encapsulation of local, mutable state
— Inheritance to share code
— Dynamic dispatch to select which code gets run

* but why specifically Java? Java

Important Ecosystem

Canonical example of OO language design
Widely used: Desktop / Server / Android / etc.

Language Rank Types Spectrum Ranking '
Industrial strength tools 1. Java S0
— Eclipse 2. C nj=;
— JUnit testing framework 3. C++ mi=E -
— Profilers, debuggers, ... 4. Python ®

Libraries: Fars
— Collections KEEP
— 1/0O libraries CALM
— Swing AND

— . LEARN JAVA

Ko epCalnAne ot com

What Next?

Classes:

CIS 121, 262, 320 — data structures, performance, computational
complexity

CIS 19x — programming languages
e C++, CH, Python, Haskell, Ruby on Rails, iPhone programming

CIS 240 — lower-level: hardware, gates, assembly, C programming
CIS 341 — compilers (projects in OCaml)

CIS 371, 380 — hardware and OS’s

CIS 552 —advanced programming

And many more!

Penn
Engineering

The Craft of Programming

The Pragmatic Programmer: he

: :
Pragmatic
From Journeyman to Master Proorammer

by Andrew Hunt and David Thomas

— Not about a particular programming language, '
it covers style, effective use of tools, and A

good practices for developing programs.

\ndrew Hunt

David Thomas

D Sun

Joshua Bloch oo

= * EffectiveJava
Effective Java by Joshua Bloch

Second Edition

— Technical advice and wisdom about using Java for
building software. The views we have espoused in

this course share much of the same design
philosophy.

Craft of Programming

 Real World OCaml v

by Yaron Minsky, Anil Madhavpeddy,
and Jason Hickey

— Using OCaml in practice: learn how to leverage R e N
its rich types, module system, libraries, and “A

tools to build reliable, efficient software. &
— https://realworldocaml.org/ Real World
OCaml

FUNCTIONAL PROGRAMMING FOR THE MASSES

Yaron Minsky, Anil Madhavapeddy
& Jason Hickey

 Explorerelated Languages:

)k Haskel ’Scala O Clojure

Ways to get Involved

o
NG PENN
APPS

ole

Undergraduate

(WECS Research

Become a TA!

Women in Computer Science

Parting Thoughts

* Improve CIS 120:

— End-of-term survey will be sent soon
— Penn Course evaluations also provide useful feedback

— We take them seriously: please complete them!

|£ | Image Processing . =H=) &j

RotateCW
RotateCCW
Mirror vertical
Mirror horizontal
Simple transform
Contrast
Reduce palette
Blur

Flood

Thanks!

let rec length (1:int 1list) : int =
begin match 1 with
| [>0
| _::t1 -> 1 + length(tl)

ece

|X| OCaml graphics

E [CEnlipse| [O Text] B Thick lines]

D EEEE0O0® Current CDIDPD

end
AAAA
ACAT | AAGA
#foo | I
GCAT TCGT TAGA GAGA
.|
T 1800 - Join
/ What channel do you want to join? What channel do you want to join?
::‘7’ bar [#baz
Gancel | [ok _Gancel | [0S
| . .i __ Pennstagram NS |
| Load newimage | | Saveimage | | Undo | [Quit |

RotateCW

RotateCCW

Border

Simple transform

Color scale

Contrast

Reduce palette

alpha-Blend

Vignette

Blur

Flood

[[[[[EE[[[[g

1890s

r, kids

Zombie

Plastic

Peaches

Custom

i

| _— kudos only
makes use of provided

<« - SpellCheckerRunner

T

i You run the
spell checker
with this

Did you attend class today?

yes
yes
yes
yes
maybe

The Billion Dollar Mistake

"I call it my billion-dollar mistake. It was the invention
of the null reference in 1965. At that time, | was
designing the first comprehensive type system for
references in an object oriented language (ALGOL W).
My goal was to ensure that all use of references should
be absolutely safe, with checking performed
automatically by the compiler. But | couldn't resist the
temptation to put in a null reference, simply because it
was so easy to implement. This has led to innumerable
errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage
in the last forty years. In recent years, a number of
program analysers like PREfix and PREfast in Microsoft
have been used to check references, and give warnings
if there is a risk they may be non-null. More recent
programming languages like Spec# have introduced
declarations for non-null references. This is the
solution, which I rejected in 1965. "

Sir Tony Hoare, QCon, London 2009

Better interfaces: Optional values

In Java, optional values are the default. Any reference type
could be null.

In OCaml, references are non-null by default and optional
values must be specified by the programmer. Only values of
type 'a option can be None.

In Java, every method must specify what it does if its
arguments are null. Many of them don't.

In OCaml, the type of a method tells you whether an
argument may be null. We didn't have to think about optional
values untilhomework 5!

Fundamental abstract types

An abstract type is defined by its interface not its
implementation.

Flexibility: interface can change without modification to
clients

Security: implementationinvariants can be preserved

In OCaml, direct expression of abstract data types through
modules and signatures

In Java, make types abstract via access modifiers (private),
provide flexibility through interfaces

