NOTE: The code in the exam is available on Codio, and you’re welcome to use that
rather than trying to type in this code yourself. However, using Codio for the exam is
completely optional and you can do well in the exam even if you decide not to use it.

Appendix A: Higher-Order List Processing Functions

Here are the higher-order list processing functions:

let rec transform (f: "a -> ’"b) (1l: "a list): ’'b list =
begin match 1 with
[[1 —> T[]

| h :: £t —> (£ h) :: (transform f t)
end
let rec fold (combine: "a -> 'b -> ’'b) (base: 'b) (l: "a list) : ’'b
begin match 1 with
| [] —> base
| h :: t —> combine h (fold combine base t)
end

Appendix B: Generic Binary Tree

Here is the definition of a generic binary tree:

type 'a tree =
| Empty
| Node of "a tree » "a * 'a tree

12

Appendix C: Queue Code

Signature for the purely function queue abstract type.

module type Q = sig
type 'a queue

val empty : ’"a queue

val is_empty : ‘a gqueue -> bool

val eng : 'a queue -> "a -> 'a queue

val deg : 'a queue -> ('a queue * ’a) (» fails 1if queue is empty =)
end

One implementation of the ¢ signature.

module ListQ : Q = struct
(# INVARIANT: queue elements are stored in the order
in which they will be dequeued: the head of the list
(if any) will be the element returned by deq.

%)

type "a queue = ’'a list
let empty : ’a queue = []
let is_empty (q : "a queue) : bool =
q =[]
let rec eng (g : "a queue) (x : ’'a) : "a queue =
begin match g with
[[l —> [x]
| y::ys —> y::(enqg ys Xx)
end
let deg (g : "a gqueue) : "a queue x 'a =

begin match g with
| [] —> failwith "empty queue"
| x::xs —-> (xS, X)
end
end

13

