
CIS 120 Midterm I February 14, 2020
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My signature below certifies that I have complied with the University of Pennsylvania’s Code
of Academic Integrity in completing this examination.

Signature: Date:

• Please wait to begin the exam until you are told it is time for everyone to start.

• When you begin, please start by writing your username (a.k.a. PennKey, e.g., sweirich)
clearly at the bottom of every page.

• There are 100 total points. The exam lasts 50 minutes. There are 11 pages in the exam.

• Do not spend too much time on any one question. Be sure to recheck all of your answers.

• There is a separate Appendix for your reference. Answers written in the Appendix will not
be graded.

• The last page of the exam can be used as scratch space. By default, we will ignore anything
you write on this page. If you write something that you want us to grade, make sure you
mark it clearly as an answer to a problem and write a clear note on the page with that
problem telling us to look at the scratch page.

• Good luck!
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1. List Recursion (20 points)

Consider the following mystery function f, defined using the help of an equally mysterious
function g.

let rec g (x : int list) : int =
begin match x with

| [] -> failwith "must provide a nonempty list"
| [hd] -> if hd > 0 then hd else 0
| hd :: tl -> if hd > 0 then hd + g tl else 0

end

let rec f (x : int list) : int =
begin match x with

| [] -> 0
| hd :: tl -> if hd < 0 then f tl else g (hd::tl)

end

Determine the value of the following expressions. Check one option below.

(a) f []

� 0

� 1

� []

� [0]

� runtime error: "must provide a nonempty list"

� infinite loop

(b) g [-3;3]

� 0

� -3

� 3

� 1

� runtime error: "must provide a nonempty list"

� infinite loop

(c) f [-3;2;3;-2;3]

� 0

� 5

� 8

� [2;3]

� [2;3;3]

� runtime error: "must provide a nonempty list"

� infinite loop
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Consider the mystery function h, shown below.
let rec h (x : int list) : int list =

begin match x with
| [] -> []
| [y] -> [y]
| hd :: tl -> hd :: 0 :: h tl

end

Determine the value of the following expressions. Check one option below.

(d) h []

� 0

� 5

� []

� [0]

� [0;0]

� infinite loop

(e) h [0;1;2]

� 0

� 3

� [0]

� [0;1;0;2]

� [0;1;0;2;0]

� [0;0;1;0;2]

� [0;0;1;0;2;0]

� infinite loop
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2. Types (18 points)
For each OCaml value below, fill in the blank for the type annotation or else write “ill typed”
if there is a type error on that line. Your answer should be the most generic type that OCaml
would infer for the value–i.e., if int list and bool list are both possible types of an
expression, you should write ’a list.

Some of these expressions refer to the variable z, to the constructors of the type ’a tree,
defined in Appendix A, or to the operations of the SET interface, defined in Appendix B.
Furthermore, you may also assume that an implementation of the SET interface is available
as below, and has been opened.

module BSTSet : SET = struct
...
end
;; open BSTSet

We have done the first one (z) for you.
let z : ______(int list * int) set ________ =
add ([1], 26) empty

let a : __________________________________________________________ =
begin match z with (* z is defined above *)
| Empty -> ([], 0)
| Node(lt, y, rt) -> y
end

let b : __________________________________________________________ =
(Empty, empty)

let c : __________________________________________________________ =
remove 26 z

let d : __________________________________________________________ =
add 4
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let e : __________________________________________________________ =
[(fun x -> x + 1); (fun x -> x - 1)]

let f : __________________________________________________________ =
fun (x:int) -> [x+1;x-1]

let g : __________________________________________________________ =
let m (x:bool) (y:int list) : int list =

if x then y else [1] in
m true

let h : __________________________________________________________ =
fun (x:’a list) -> [x]

let j : __________________________________________________________ =
fun x ->

begin match x with
| [] -> 1
| (y::_) -> if y then 2 else 3

end
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3. Trees and Binary Search Trees (11 points)

The next part refers to the following tree datatype.
type ’a tree =

| Empty
| Node of ’a tree * ’a * ’a tree

Consider the possible binary search trees containing a given set of elements. For reference,
the binary search tree invariant appears in Appendix A.

For example, there are only two different binary search trees containing the values 1 and 2.
We can draw them like this (as usual, omitting the Empty subtrees).

t1 = 1 t2 = 2
\ and /
2 1

(a) Write code that constructs these two trees in OCaml.

let t1 : int tree =

___________________________________________________________

let t2 : int tree =

___________________________________________________________

(b) Draw all binary search trees containing the values 1, 2, and 3.
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4. Tree Shapes (24 points total)

We say that two trees (not necessarily binary search trees) have the same shape if their
structure is identical even when the values at corresponding nodes differ. For example, the
following two trees, called t1 and t2, have the same shape:

t1 = 7 t2 = 3
/ \ / \

2 3 2 7
/ \ / \

1 6 6 1

On the next page, you will implement the same_shape function such that, with the two
trees above, same_shape t1 t2 evaluates to true. However, first, answer the following
questions.

(a) (3 points) Is it possible to implement same_shape so that it can compare two trees that
contain different types of elements, such as an int tree and a string tree?

� Yes � No

(b) (3 points) Is it possible to implement same_shape so that it can take advantage of the
binary search tree invariant to produce an answer more efficiently when its inputs are
binary search trees?

� Yes � No

(c) (3 points) Suppose t is a binary search tree and x is an element that appears in the
tree. Is it always the case that same_shape t (insert (delete t x) x) evaluates
to true?

� Yes � No

(d) (3 points) Suppose t is a binary search tree and x is an element that does not ap-
pear in the tree. Is it always the case that same_shape t (delete (insert t x) x)

evaluates to true?

� Yes � No

(e) (3 points) Suppose t1 and t2 are binary search trees that contain the same elements
and that same_shape t1 t2 evaluates to true. Is it always the case that t1 = t2

evaluates to true?

� Yes � No
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(f) (12 points) Write a function that determines whether two different trees (not necessar-
ily binary search trees) have the same shape.

let rec same_shape (t1 : ’a tree) (t2: ’b tree) : bool =
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5. Programming with Higher-order Functions, Lists and Tuples (24 points)

Suppose we would like to implement a data structure representing nonempty lists. The inter-
face and beginning of an implementation of this data structure is shown in Appendix C. Read
the code in the appendix now carefully including the examples; your job on this problem is
to complete the implementation.

Note this line the implementation:
type ’a ne_list = ’a * ’a list

This code defines a nonempty list as a tuple of a single element (to store the first element of
the nonempty list) and a regular list (to store any remaining elements of the list). All of the
code that you will write for this problem may use the fact that nonempty lists are represented
as tuples.

For all parts of this problem, you may not use recursion, or the example
functions to_list and from_list. Instead, your solutions may only use
the functions listed in Appendix D, including fst, snd, @ (or append),
max, transform and fold. Constructors, such as :: and [], are also fine.

(a) Implement ne_head so that it passes the following test case.
let test () : bool =

ne_head (from_list [-2;-1;-3]) = -2

(* Access the first element of the non-empty list *)
let ne_head (ne : ’a ne_list) : ’a =

PennKey: 9



(b) Implement ne_append so that it passes the following test case.
let test () : bool =

let ne1 : int ne_list = from_list [1;2] in
let ne2 : int ne_list = from_list [4;6;5] in
to_list (ne_append ne1 ne2) = [1;2;4;6;5]

(* Append two non-empty lists into a larger non-empty list. *)
let ne_append (ne1 : ’a ne_list) (ne2 : ’a ne_list) : ’a ne_list =

(c) Use a higher-order function to implement ne_transform so that it passes the following
test case.

let test () : bool =
let ne1 : int ne_list = from_list [1;2;3] in
to_list (ne_transform (fun x -> x + 1) ne1) = [2;3;4]

(* Transform each element of a non-empty list *)
let ne_transform (f: ’a -> ’b) (x : ’a ne_list) : ’b ne_list =
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(d) Use a higher-order function to implement ne_maximum so that it passes the following
test case.

let test () : bool =
ne_maximum (from_list [-2;-1;-3]) = -1

(* Find the largest element of a non-empty list *)
let ne_maximum (x : ’a ne_list) : ’a =

(NOTE: reread the box on page 9 to make sure that you have followed the instructions
for all parts of this problem.)
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Scratch Space
Use this page for work that you do not want us to grade. If you run out of space elsewhere in the
exam you may use the back of one of the pages. However, if you do so, you must put a clear note
in the exam so that we can find your answer.
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A Binary Search Trees
Tree datatype definition

type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

The Binary Search Tree Invariant

• Empty is a binary search tree.

• A tree Node(lt,x,rt) is a binary search tree if lt and rt are both binary search trees, and
every label of lt is less than x and every label of rt is greater than x.

BST operations

(* Inserts n into the BST t *)
let rec insert (t: ’a tree) (n: ’a) : ’a tree =

begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t
else if n < x then Node (insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

(* returns a BST that has the same set of nodes as t except with n
removed (if it’s there) *)

let rec delete (t: ’a tree) (n: ’a) : ’a tree =
begin match t with
| Empty -> Empty
| Node(lt, x, rt) ->

if x = n then
begin match (lt, rt) with
| (Empty, Empty) -> Empty
| (Empty, _) -> rt
| (_, Empty) -> lt
| (_,_) -> let y = tree_max lt in Node (delete lt y, y, rt)
end

else if n < x then Node(delete lt n, x, rt)
else Node(lt, x, delete rt n)

end
(* end delete *)
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B SET interface

module type SET = sig

(* The "abstract type" ’a set.

A set is an _unordered_ collection of _distinct_ elements.

In mathematics, sets are typically written with curly braces;
e.g. the set containing four, five, and six would be written {4,
5, 6} (but note that this is NOT valid OCaml syntax for a set).

By unordered, we mean that {4, 5, 6} and {5, 6, 4} are equivalent
mathematically. By distinct, we mean that a set contains any
particular element only either 0 or 1 times (no duplicates are
allowed). *)

type ’a set

(* The empty set, with no elements. *)
val empty : ’a set

(* ‘is_empty s‘ is true exactly when s has no elements. *)
val is_empty : ’a set -> bool

(* ‘list_of_set s‘ returns a list of all the elements of s. This
list should be sorted in ascending order and may not contain
duplicate elements. *)

val list_of_set : ’a set -> ’a list

(* ‘add x s‘ returns a set just like s, except x is now also an
element. If x is already an element of s, then it just returns
s. For example:

add 3 {4, 5, 6} = {3, 4, 5, 6}
add "a" {"b", "a", "c"} = {"b", "a", "c"} *)

val add : ’a -> ’a set -> ’a set

(* ‘remove x s‘ returns a set just like s, except x is not an
element. If x already wasn’t an element, then it just returns
s. *)

val remove : ’a -> ’a set -> ’a set

(* ‘member x s‘ returns true exactly when x is a member of s. *)
val member : ’a -> ’a set -> bool

(* ‘size s‘ returns the "cardinality" (number of elements) of s. *)
val size : ’a set -> int

end
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C Non-empty list interface and implementation

module type NELIST = sig

type ’a ne_list

(* (example) Convert a regular list to a non-empty list *)
val from_list : ’a list -> ’a ne_list

(* (example) Convert a non-empty list to a regular list *)
val to_list : ’a ne_list -> ’a list

(* (a) Access the first element of the non-empty list *)
val ne_head : ’a ne_list -> ’a

(* (b) Append two non-empty lists into a larger non-empty list. *)
val ne_append : ’a ne_list -> ’a ne_list -> ’a ne_list

(* (c) Transform each element of a non-empty list *)
val ne_transform : (’a -> ’b) -> ’a ne_list -> ’b ne_list

(* (d) Find the largest element of a non-empty list *)
val ne_maximum : ’a ne_list -> ’a

end

module Nelist : NELIST = struct

(* A non-empty list is a tuple of a single element (to store
the first element of the nonempty list) and a regular list
(to store any remaining elements of the list). *)

type ’a ne_list = ’a * ’a list

(* (example) Convert a regular list into a non-empty list by
pulling out its first element.
This function will fail for empty lists. *)

let from_list (x : ’a list) : ’a ne_list =
begin match x with
| hd :: tl -> (hd, tl)
| [] -> failwith "Input list must be non-empty"

end

(* (example) Convert a non-empty list to a regular list by
’cons’-ing the first element back on the rest of the list. *)

let to_list (x : ’a ne_list) : ’a list =
begin match x with
| (hd, tl) -> hd :: tl

end

(* You need to complete the rest ... *)

PennKey: 15



D List Processing Functions
Library function declarations

(* Concatenate two lists, same as operator @ *)
val append : ’a list -> ’a list -> ’a list

(* Return larger of the two arguments *)
val max : ’a -> ’a -> ’a

(* Return first component of pair *)
val fst : (’a * ’b) -> ’a

(* Return second component of pair *)
val snd : (’a * ’b) -> ’b

Higher-order functions

let transform (f: ’a -> ’b) (l: ’a list): ’b list =
fold

(fun (h:’a) (acc:’b list) -> f h :: acc)
[]
l

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =
begin match l with

| [] -> base
| h :: t -> combine h (fold combine base t)

end
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