
Programming Languages
and Techniques

(CIS120)

Lecture 1

Introduction to Program Design

Program Design

Fundamental Design Process

CIS120

1. Understand the problem
What are the relevant concepts and how do they relate?

2. Formalize the interface
How should the program interact with its environment?

3. Write test cases
How does the program behave on typical inputs?

On unusual ones? On invalid ones?
4. Implement the required behavior

Often by decomposing the problem into simpler ones
and applying the same recipe to each

Design is the process of translating informal
specifications (“word problems”) into running code

5. Revise / Refactor / Edit

A design problem

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost; each attendee costs four cents
($0.04). Every performance also has a base cost of $180.
At what price do you make the highest profit?

CIS120

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost; each attendee costs four cents
($0.04). Every performance also has a base cost of $180.
At what price do you make the highest profit?

CIS120

What are the relevant concepts?

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost; each attendee costs four cents
($0.04). Every performance also has a base cost of $180.
At what price do you make the highest profit?

CIS120

What are the relevant concepts?

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost; each attendee costs four cents
($0.04). Every performance also has a base cost of $180.
At what price do you make the highest profit?

CIS120

profit = revenue – cost
revenue = price * attendees
cost = $180 + attendees * $0.04
attendees = some function of the ticket price

What are the relationships among them?

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost; each attendee costs four cents
($0.04). Every performance also has a base cost of $180.
At what price do you make the highest profit?

CIS120

Determine how profit depends on the
ticket price, which will allow you to
maximize profit by changing the price

What are you trying to achieve?

Step 2: Formalize the Interface

CIS120

(* Money is represented in cents. *)
let profit (price : int) : int = …

type annotations
declare the input

and output types**

comment documents
the design decision

**OCaml will let you omit these type annotations, but including them is mandatory for CIS120. Using type annotations is good
documentation; they also improve the error messages you get from the compiler. When you get a type error message from
the compiler, the first thing you should do is check that your type annotations are there and that they are what you expect.

Goal: write a function that returns the profit when given the price
Idea: we’ll represent money in cents, using integers*

* Floating point is generally a bad choice for representing money: bankers use different rounding conventions than the IEEE
floating point standard, and floating point arithmetic isn’t as exact as you might like. Try calculating 0.1 + 0.1 + 0.1 sometime
in your favorite programming language…

Step 3: Write test cases
• By looking at the design problem, we can calculate

specific test cases

CIS120

let profit_500 : int =
let price = 500 in
let attendees = 120 in
let revenue = price * attendees in
let cost = 18000 + 4 * attendees in
revenue - cost

Writing the Test Cases in OCaml
• Record the test cases as assertions in the program:
– the command run_test executes a test

CIS120

let test () : bool =
(profit 500) = profit_500

;; run_test "profit at $5.00" test

a test is just a function that takes no input and returns true if the test succeeds

note the use of double semicolons
before top level commands

the string in quotes identifies
the test in printed output

(if it fails)

Step 4: Implement the Behavior
profit, revenue, and cost are easy to define:

CIS120

let attendees (price : int) : int = ...

let revenue (price : int) : int =
price * (attendees price)

let cost (price : int) : int =
18000 + (attendees price) * 4

let profit (price : int) =
(revenue price) – (cost price)

Apply the Design Pattern Recursively
attendees requires a bit of thought:

CIS120

let attendees (price : int) : int =
failwith “unimplemented”

let test () : bool =
(attendees 500) = 120

;; run_test "attendees at $5.00" test

let test () : bool =
(attendees 490) = 135

;; run_test "attendees at $4.90" test
generate the tests
from the problem

statement first.

*Note that the definition of attendees must go before the definition of profit
because profit uses the attendees function.

“stub out”
unimplemented

functions

Attendees vs. Ticket Price

CIS120

0

20

40

60

80

100

120

140

160

 $4.75 $4.80 $4.85 $4.90 $4.95 $5.00 $5.05 $5.10 $5.15

$0.10

-15

let attendees (price:int) : int =
-15/10 * price + 870

Assume a linear relationship between ticket price (x)
and number of attendees (y).
Equation for a line: y = mx + b

m = (diff in attendance / diff in price) = - 15 / 10
b = 120 – m * 500 = 870

Run!

CIS120

Run the program!

CIS120

• Our test cases for attendees failed…
• Debugging reveals that integer division is tricky*

*Using integer arithmetic, -15 / 10 evaluates to -1, since -1.5 rounds to -1. Multiplying -15*price before dividing by 10
increases the precision because rounding errors don’t creep in.

let attendees (price:int) :int =
(-15 * price) / 10 + 870

Here is the fixed version:

Using Tests
Modern approaches to software engineering advocate

test-driven development, where tests are written
very early in the programming process and used to
drive the rest of the process.

We are big believers in this philosophy, and we’ll be
using it throughout the course.

In the homework template, we may provide one or
more tests for each of the problems. They will
generally not be complete. You should start each
problem by making up more tests.

CIS120

How not to Solve this Problem

This program is bad because it
– hides the structure and abstractions of the problem
– duplicates code that could be shared
– doesn’t document the interface via types and comments

Note that it still passes all the tests!

CIS120

let profit price =
price * (-15 * price / 10 + 870) -
(18000 + 4 * (-15 * price / 10 + 870))

Summary
• CIS120 promotes an iterative design process

1. Understand the problem
2. Formalize the interface
3. Write test cases
4. Implement the desired behavior

• Test early!
– Helps clarify interfaces and understanding
– Helps when debugging
– Useful in the long term too

CIS120

