
Programming Languages
and Techniques

(CIS120)

Lecture 2
Value-Oriented Programming

Programming in OCaml

CIS 120 Tools

• OCaml
– Industrial-strength, statically-typed

functional programming language
– Lightweight, approachable setting for

learning about program design
– Web based development: codio.com

• Java
– Industrial-strength, statically-typed

object-oriented language

– Many tools/libraries/resources available

– Develop using Codio or Eclipse

CIS120

Why two languages??
• Clean pedagogical progression
• Everyone starts at the same place
• Practice in learning new tools
• Different perspectives on programming

CIS120

“[OCaml] made me better understand features of Java that seemed
innate to programming, which were merely abstractions and
assumptions that Java made. It made me a better Java programmer.''
--- Anonymous CIS 120 Student

“[The OCaml part of the class] was very essential to
getting fundamental ideas of comp sci across. Without the second
language it is easy to fall into routine and syntax lock where you
don't really understand the bigger picture.'’

---Anonymous CIS 120 Student

Who uses OCaml?

CIS120

What is an OCaml module?
;; open Assert

let attendees (price:int) :int =
(-15 * price) / 10 + 870

let test () : bool =
attendees 500 = 120

;; run_test "attendees at 5.00" test

let x : int = attendees 500

;; print_int x
;; print_endline "end of demo"

CIS120

module import

(top level) commands

function declarations
(use let keyword)

identifier declarations
(also use let)

To know what will be printed
we need to know the
value of this expression

What does an OCaml program do?

CIS120

To know what an OCaml program will do, we need to know
what the value of each expression is

To know if the test will pass,
we need to know whether this
expression is true or false

;; open Assert

let attendees (price:int) :int =
(-15 * price) / 10 + 870

let test () : bool =
attendees 500 = 120

;; run_test "attendees at 5.00" test

let x = attendees 500

;; print_int x

Value-Oriented Programming

pure, functional, strongly typed

Course goal

• Beautiful code
– is simple
– is easy to understand
– is easy(er) to get right
– is easy to maintain
– takes skill to write

CIS120

Strive for beautiful code.

Value-Oriented Programming
• Java, C, C#, C++, Python, Perl, etc. are tuned for an
imperative programming style
– Programs are full of commands

• “Change x to 5!”
• “Increment z!”
• “Make this point to that!”

• OCaml, on the other hand, promotes a
value-oriented style
– We’ve seen that there are a few commands…

print_endline, run_test

… but these are used rarely
– Most of what we write is expressions denoting values

CIS120

Metaphorically, we might say that

imperative programming is about doing
while

value-oriented programming is about being

CIS120

Programming with Values
• Programming in value-oriented (a.k.a. pure or functional)

style can be a bit challenging at first

• But it often leads to code that is much more beautiful

CIS120

Values and Expressions

• Each expression computes a value (or already is a value)
• Each type corresponds to a set of well-typed values

CIS120

Types Values Operations* Expressions

int -1 0 1 2 + * - / 3 + (4 * x)

float 0.12 3.1415 +. *. -. /. 3.0 *. (4.0 *. a)

string “hello” “CIS120” ^ (concatenation) “Hello, ” ^ s

bool true false && || not (not b1) || b2

*Note that there is no automatic conversion from float to int, etc., so you must use explicit conversion
operations like string_of_int or float_of_int

Types
• Every identifier has a unique associated type
• "Colon" notation associates an identifier with its type

x : int a : float
s : string b1 : bool

• Every OCaml expression has a unique type determined by its
constituent subexpressions

CIS120

x + (int_of_float (a +. 2.3))
: int : float

: float

: int

: int

Type Errors
• OCaml uses type inference to check that your

program uses types consistently

CIS120

x + (string_of_float (a +. 2.3))
: int : float

: float

: string

ERROR: expected int but found string
NOTE: Every time OCaml points
out a type error, it is indicating a
likely bug. Well-typed Ocaml
programs often "just work"!

Sneak Preview
• OCaml has a rich type structure

(+) : int -> int -> int function types
string_of_int : int -> string

() : unit
(1, 3.0) : int * float tuple types

[1;2;3] : int list list types

• We will see all of these
(and how to define our own brand new types)
in upcoming lectures…

CIS120

Calculating the Values of Expressions

OCaml’s model of computation

CIS120

Simplification vs. Execution
• We can think of an OCaml expression as just a way of

writing down a value
• We can visualize running an OCaml program as a

sequence of calculation or simplification steps that
eventually lead to this value

• In contrast, a running Java program is best thought of
as performing a sequence of actions or commands

• … a variable named x gets created
• … then we put the value 3 in x
• … then we test whether y is greater than z
• … the answer is true, so we put the value 4 in x

Each command modifies the implicit, pervasive state of the
machine

CIS120

Calculating with Expressions
OCaml programs mostly consist of expressions

Expressions simplify to values:

3 ⇒ 3 (values compute to themselves)

3 + 4 ⇒ 7
2 * (4 + 5) ⇒ 18
attendees 500 ⇒ 120

The notation <exp> ⇒ <val> means that the expression
<exp> computes to the final value <val>

CIS120

Note that the symbol ‘⇒’ is not OCaml syntax. We’re using it to
talk about the way OCaml programs behave.

Step-wise Calculation
• We can break down ⇒ in terms of single step

calculations, written ⟼

• For example:
(2+3) * (5-2)

⟼ 5 * (5-2) because 2+3 ⟼ 5
⟼ 5 * 3 because 5-2 ⟼ 3
⟼ 15 because 5*3 ⟼15

CIS120

Conditional Expressions

• OCaml conditionals are also expressions: they can be
used inside of other expressions:

CIS120

if s = "positive" then 1 else -1

if day >= 6 && day <= 7
then "weekend" else "weekday"

(if 3 > 0 then 2 else -1) * 100

if x > y then "x is bigger"
else if x < y then "y is bigger"
else "same"

Simplifying Conditional Expressions
• A conditional expression yields the value of either its ‘then’-

branch or its ‘else’-branch, depending on whether the test is
‘true’ or ‘false’.

• For example:
(if 3 > 0 then 2 else -1) * 100

⟼ (if true then 2 else -1) * 100
⟼ 2 * 100
⟼ 200
• It doesn’t make sense to leave out the ‘else’ branch in an ‘if’.

(What would be the value if the test was ‘false’?)

CIS120

Typing Conditional Expressions

CIS120

if s = "positive" then 1 else -1

: string : int: int

: bool

: int

NOTE: both branches
must have the same
type!

: string : string: int

Type Errors

CIS120

if s = "positive" then 1 else “CIS 120”

: bool

ERROR: expected int but found string

Let Declarations

naming, not assigning

Top-level Let Declarations
• A let declaration gives a name (a.k.a. an identifier) to

the value denoted by some expression

• The scope of a top-level identifier is the rest of the
file after the declaration.

CIS120

let pi : float = 3.14159
let seconds_per_day : int = 60 * 60 * 24

“scope” of a name = ”the region of the
program in which it can be used”

Immutability
• Once defined by let, the binding between an

identifier and a value cannot be changed!

CIS120

int x = 3;
x = 4;

Java / C / C++ / …
imperative update

'x = 4' is a command
that means 'update the

contents of location
x to be 3'

The state associated with 'x'
changes as the program runs

let x : int = 3 in
x = 4

Ocaml
named expressions

'let x : int = 3 ' simply gives
the value 3 the name 'x'

'x = 4' asks does 'x equal 4'?
(a boolean value, false)

Once defined, the value
bound to 'x' never changes

Local Let Expressions
• Let declarations can appear both at top-level and nested

within other expressions.

• Local (nested) let declarations are followed by ‘in’
– e.g. attendees, revenue, and cost

• Top-level let declarations do not use ‘in’
– e.g. profit_500

• The scope of a local identifier is just the expression after the
‘in’

CIS120

let profit_500 : int =
let attendees = 120 in
let revenue = attendees * 500 in
let cost = 18000 + 4 * attendees in
revenue – cost

The scope of
attendees is

the expression
after the ‘in’

Typing Let Expressions

• A let-bound identifier has the type of the expression
it is bound to.

• The type of the whole local let expression is the type
of the expression after the ‘in’

• Recall: type annotations are written using colon:
let x : int = … ((x + 3) : int) …

CIS120

let x = 3 + 5 in string_of_int (x * x)

: string: int : int

: string

Scope
Multiple declarations of the same variable or
function name are allowed. The later declaration
shadows the earlier one for the rest of the program.

CIS120

scope of x

scope of y

scope of x
(shadows earlier x)

scope of z

let total : int =
let x = 1 in
let y = x + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

scope of total is the rest of the file

Simplifying Let Expressions

CIS120

let total : int =
let x = 1 in
let y = x + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =
let x = 1 in
let y = x + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

First, we
simplify

the right-hand
side of the

declaration for
identifier

total.

Simplifying Let Expressions

CIS120

let total : int =
let x = 1 in
let y = x + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

This r.h.s. is
already a

value.

Simplifying Let Expressions

CIS120

let total : int =
let x = 1 in
let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Substitute 1
for x here.

But not
here because
the second x

shadows the first.

Simplifying Let Expressions

CIS120

let total : int =
let x = 1 in
let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Discard the
local let since

it’s been
substituted

away.

Simplifying Let Expressions

CIS120

let total : int =

let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplify the
expression

remaining in
scope.

Simplifying Let Expressions

CIS120

let total : int =

let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Repeat!

Simplifying Let Expressions

CIS120

let total : int =

let y = 2 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let y = 2 in
let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let y = 2 in
let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let x = 1000 in
let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let x = 1000 in
let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let z = 1002 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let z = 1002 in
1000 + 2 + 1002

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let z = 1002 in
1000 + 2 + 1002

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

1000 + 2 + 1002

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

1000 + 2 + 1002 ⇒ 2004

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int = 2004

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

