Programming Languages
and Techniques
(C1S120)

Lecture 2
Value-Oriented Programming

Programming in OCam|

CIS 120 Tools

e OCaml

— Industrial-strength, statically-typed
functional programming language

— Lightweight, approachable setting for e
learning about program design
— Web based development: codio.com CCOCIlO
* Java
— Industrial-strength, statically-typed ((
object-oriented language -
— Many tools/libraries/resources available <

— Develop using Codio or Eclipse

eclipse

CIS120

Why two languages??

Clean pedagogical progression
Everyone starts at the same place
Practice in learning new tools

Different perspectives on programming

“IThe OCaml part of the class] was very essential to
getting fundamental ideas of comp sci across. Without the second
language it is easy to fall into routine and syntax lock where you
don't really understand the bigger picture.”

---Anonymous CIS 120 Student

“IOCaml] made me better understand features of Java that seemed
innate to programming, which were merely abstractions and
assumptions that Java made. It made me a better Java programmer."
--- Anonymous CIS 120 Student

Who uses OCaml?

_\U
. t ' . :é\\‘\\\
: 7
{7
L/ facebook BZ.
- (G W&
Y \\\

LexiFi GOL)gl(’? CiTR!X’

| MLstate

SimCorp

2 JANE STREET

n’wsl\life

AAAAAAAA

CIS120

What is an OCam| module?

;3 open Assert <—

let attendees (price:int) :int = -

(-15 * price) / 10 + 870

let test () : bool = 4,//’/////////

attendees 500 = 120

;5 run_test "attendees at 5.00" test\\\

let x : i1nt = attendees 500« \\

/

e
;5 print_int x ,:i:§

: . — |
;5 print_endline "end of demo"

CIS120

module import

function declarations
(use let keyword)

identifier declarations
(also use let)

(top level) commands

What does an OCaml program do?

;3 open Assert

let attendees (price:int) :int =
(-15 * price) / 10 + 870

let test () : bool = 4————””"”——
attendees 500 = 120
;3 run_test "attendees at 5.00" test

let x = attendees 500

:: print_int x é””’—’———’———’———’—

_ To know if the test will pass,
we need to know whether this
expression is true or false

__To know what will be printed
we need to know the
value of this expression

To know what an OCaml program will do, we need to know
asi0 what the value of each expression is

Value-Oriented Programming

pure, functional, strongly typed

Course goal

Strive for beautiful code.

* Beautiful code
— is simple
— is easy to understand
— is easy(er) to get right
— IS easy to maintain

— takes skill to write

CIS120

Value-Oriented Programming

e Java, C, C#, C++, Python, Perl, etc. are tuned for an
imperative programming style
— Programs are full of commands
* “Change x to 5!”

* “Increment z!”
* “Make this point to that!”

e OCaml, on the other hand, promotes a
value-oriented style

— We've seen that there are a few commands...

print_endline, run_test
... but these are used rarely

— Most of what we write is expressions denoting values

Metaphorically, we might say that
imperative programming is about doing

while

value-oriented programming is about being

Berng vs Doing

CIS120

Programming with Values

* Programming in value-oriented (a.k.a. pure or functional)
style can be a bit challenging at first

e But it often leads to code that is much more beautiful

CIS120

Values and Expressions

Operations*® Expressions

int -101°2 + * -/ 3+ (4 * x)

float 0.12 3.1415 +. ¥, - /. 3.0 ., (4.0 *. a)

S'tl"'Lng “hellO” “CI512®’, A (concatenation) “HellO, ” A S

bool true false && || not (not bl) Il b2

e Each expression computes a value (or already is a value)

e Each type corresponds to a set of well-typed values

*Note that there is no automatic conversion from float to int, etc., so you must use explicit conversion
CIS120 operations like string_of_int or float_of_int

Types

Every identifier has a unigue associated type

"Colon" notation associates an identifier with its type
X : 1nt a . float
s : string bl : bool

Every OCaml expression has a unique type determined by its
constituent subexpressions

§\+ (int_of_float (a +. 2.3))

: 1nt T: float
\)

Y
. float
)

1int

CIS120 : 1nt

Type Errors

 OCaml uses type inference to check that your
program uses types consistently

&\+ (string_of_float (a +. 2.3))
. 1nt C&\\j: flgpt

Y
. float
]

Y -
: string y

ERROR: expected 1int but found string

NOTE: Every time OCaml points
out a type error, it is indicating a
likely bug. Well-typed Ocaml
programs often "just work"!

N\

CIS120

Sneak Preview

* OCaml has a rich type structure

(+) : int -> int -> int function types
string_of_int : 1int -> string

(O : unit

(1, 3.0) : int * float tuple types
[1;2;3] : int list list types

e We will see all of these

(and how to define our own brand new types)
in upcoming lectures...

CIS120

Calculating the Values of Expressions

OCaml’s model of computation

CIS120

Simplification vs. Execution

* We can think of an OCaml expression as just a way of
writing down a value

* We can visualize running an OCaml program as a
sequence of calculation or simplification steps that
eventually lead to this value

* |n contrast, a running Java program is best thought of

as performing d sequence of actions or commands
* ...avariable named x gets created
* ... then we put the value 3 in x
... then we test whether y is greater than z
e ... the answer is true, so we put the value 4 in x

Each command modifies the implicit, pervasive state of the
machine

CIS120

Calculating with Expressions

OCaml programs mostly consist of expressions

Expressions simplify to values:

3 3 (values compute to themselves)

3 +4 =7
2 * (4 +5) > 18
attendees 500 = 120

The notation <exp> = <val> means that the expression
<exp> computes to the final value <val>

Note that the symbol ‘=’ is not OCaml syntax. We’re using it to
talk about the way OCaml programs behave.

CIS120

Step-wise Calculation

 We can break down = in terms of single step
calculations, written +—

* For example:
(2+3) * (5-2)
— 5 * (5-2) because 2+3+— 5

—5 * 3 because 5-2 — 3

— 15 pecause 5*3 —15

CIS120

Conditional Expressions

if s = "positive" then 1 else -1

if day >= 6 && day <= 7
then "weekend" else "weekday"

 OCaml conditionals are also expressions: they can be
used inside of other expressions:

(1if 3 > 0 then 2 else -1) * 100

if x > y then "x is bigger"
else if x <y then "y is bigger"
else "same"

CIS120

Simplifying Conditional Expressions

* A conditional expression yields the value of either its ‘then’-
branch or its ‘else’-branch, depending on whether the test is
‘true’ or ‘false’.

* For example:

(1f 3 > 0 then 2 else -1) * 100
— (1f true then 2 else -1) * 100
— 2 ¥ 100
— 200

|t doesn’t make sense to leave out the ‘else’ branch in an ‘if’.
(What would be the value if the test was ‘false’?)

CIS120

Typing Conditional Expressions

CIS120

if s = "positive" then 1 else -1

“\\f/:tring “\\: int " : 1nt
\ Y,
. bgol NOTE: both branches
\. v must have the same

. 1nt R

Type Errors

if s = "positive" then 1 else “CIS 120”

ERROR: expected int but found string

CIS120

naming, not assigning

Top-level Let Declarations

* A let declaration gives a name (a.k.a. an identifier) to
the value denoted by some expression

let pi1 : float = 3.14159
let seconds_per_day : int = 60 * 60 * 24

* The scope of a top-level identifier is the rest of the
file after the declaration.

“scope” of a name = "the region of the
program in which it can be used”

CIS120

Immutability

* Once defined by Let, the binding between an
identifier and a value cannot be changed!

CIS120

1nt X

3;

let x : 1nt = 3 1n

X =4
Ocaml
named expressions

'let x : int =3 ' simply gives
the value 3 the name 'x’
'x = 4" asks does 'x equal 4'?
(a boolean value, false)

Once defined, the value
bound to 'x' never changes

Local Let Expressions

* Let declarations can appear both at top-level and nested
within other expressions.

The scope of

let attendees = 120 1in after the ‘in’

* Local (nested) let declarations are followed by ‘in’
— e.g. attendees, revenue, and cost

* Top-level let declarations do not use ‘in’
— e.g. profit_500

 The scope of a local identifier is just the expression after the
linl

Typing Let Expressions

let x =,3 + 5 ,in string_of_int (x * x)
l—'—‘ B ~—
AN

: int . string > int

: string
* A let-bound identifier has the type of the expression
it is bound to.

* The type of the whole local let expression is the type
of the expression after the ‘in’

* Recall: type annotations are written using colon:
let x : int = .. ((X+ 3) : 1nt) ..

CIS120

Scope

Multiple declarations of the same variable or
function name are allowed. The later declaration
shadows the earlier one for the rest of the program.

let total : int =
let x = 1 1n _— scope of x
let y =x+1 1in // scope of y
let x = 1000 1in // scope of x
let z = X + 2 1n /(shadowsearlierx)
A A G scope of z
\

\ scope of total is the rest of the file

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope

— drop the ‘let...in" part
— simplify what's left

let total : int =
let x = 1 1n
let y =x+ 1 1n
let x = 1000 1in
let z = X + 2 1n

X +Yy + Z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

First, we
. simplify
lefc total : 1int = the right-hand
let X =1 1n side of the
let y = X + 1 1n declaration for
._?t " 10@@_1”_ identifier
——= = total.
let z=x + 2 1
+

h
<
+
N

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int = T§2$jf
let X = 1_<—=|;-r‘r value.
let y =x+1 1in
let x = 1000 1in
let z = X + 2 1n

X +Yy + Z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:

— first calculate the value of the right hand side

— then substitute the resulting value for the identifier in its scope

— drop the ‘let...in" part
— simplify what's left

let total : int = Substitute 1
'|_e-t X = 1 -i_n ~ for x here.
lety =1 n
let x = 1000 1n
let z = X‘;l-__z_jgn But not

here because
X:) A the second x
shadows the first.

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope

— drop the ‘let...in" part
— simplify what's left

let total : int = ~ loval et since
-I.it X = l m €« it’s been
let y = 1 + 1 1n substituted
let X = 1000 in ey
let z = x + 2 1n
X+YVY + 2

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

lety=1+11n

let x = 1000 1in

let z = x + 2 1n
X +Y + Z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope

— drop the ‘let...in" part
— simplify what's left

. Simplify the
let total : 1int = expﬁesiion
remaining in
it)/:l*'lm scope.
let x = 1000 1in
let z = x + 2 in
X +V + Z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side

— then substitute the resulting value for the identifier in its scope

— drop the ‘let...in" part
— simplify what's left

let total : int =

lety=1+1 1in

let x = 1000 1in

let z = x + 2 1n
X +Y + Z

CIS120

Repeat!

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

let y = 2 1n
let x = 1000 in
let z = X + 2 1n

X +Yy + Z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

let y = 2 1n

let x = 1000 1in

let z = x + 2 1n
X + 2 + 2

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

let y = 2 in

let x = 1000 1in

let z = x + 2 1n
X +2 + Z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

let x = 1000 in
let z = X + 2 1n
X +2 + Z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope

— drop the ‘let...in" part
— simplify what's left

let total : int =

let x = 1000 1in
let z = x + 2 1in
X +2 + 27

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

let x = 1000 1in
let z = X + 2 1n
X + 2 + Z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

let x = 1000 1in
let z = 1000 + 2 1in
1000 + 2 + z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

let x = 1000 1in
let z = 1000 + 2 1in
1000 + 2 + z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

let z = 1000 + 2 1in
1000 + 2 + z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

let z = 1000 + 2 1in
1000 + 2 + z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

let z 1002 1in
1000 + 2 + z

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

let z 1002
1000 + 2 +

= -
S
N

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:

first calculate the value of the right hand side

then substitute the resulting value for the identifier in its scope
drop the ‘let...in" part

simplify what's left

let total : int =

let z = 1002 1in

1000 + 2 + 1002

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int =

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:

first calculate the value of the right hand side

then substitute the resulting value for the identifier in its scope
drop the ‘let...in" part

simplify what's left

let total : int =

1000 + 2 + 1002 = 2004

CIS120

Simplifying Let Expressions

 To calculate the value of a Let expression:
— first calculate the value of the right hand side
— then substitute the resulting value for the identifier in its scope
— drop the ‘let...in" part
— simplify what's left

let total : int = 2004

CIS120

