
Programming Languages
and Techniques

(CIS120)

Lecture 3

Value-Oriented Programming (continued)
Lists and Recursion

Review: Value-Oriented Programming
• OCaml promotes a value-oriented style:

Most of what we write are expressions denoting
values

• We can visualize running an OCaml program as a
sequence of calculation or simplification steps that
eventually lead to values

(300 + 12) * 60 + 17
⟼ 312 * 60 + 17
⟼ 18720 + 17
⟼ 18737

CIS120

let total_seconds (hours:int)
(minutes:int)
(seconds:int)

: int =
(hours * 60 + minutes) * 60 + seconds

(Top-level) Function Declarations

CIS120

function name parameter names parameter types

result type
function body (an expression)

Function Calls
Once a function has been declared, it can be invoked
by writing the function name followed by a sequence
of arguments. The whole expression is a function
application.

(Note: the sequence of arguments is not parenthesized.)

CIS120

total_seconds 5 30 22

Calculating With Functions
• To calculate the value of a function application, first calculate

values for its arguments and then substitute them for the
parameters in the body of the function.

total_seconds (2 + 3) 12 17
⟼ total_seconds 5 12 17
⟼ (5 * 60 + 12) * 60 + 17 substitute args in body
⟼ (300 + 12) * 60 + 17
⟼ 312 * 60 + 17
⟼ 18720 + 17
⟼ 18737

CIS120

let total_seconds (hours:int)
(minutes:int)
(seconds:int)

: int =
(hours * 60 + minutes) * 60 + seconds

CIS120

What is the value computed for ‘answer’ in the following
program? (0 .. 9)

let answer : int =
let x = 3 in
let f (y : int) = y + x in
let x = 1 in
f x

let answer : int =
let f (y : int) = y + 3 in
let x = 1 in
f x

let answer : int =
let f (y : int) = y + 3 in
f 1

let answer : int =
1 + 3

let answer : int =
4

Lists

A Value-Oriented Approach
to Sequential Data

What is a list?

• Here, the ‘::’ infix operator constructs a new list
from a head element and a shorter list.
– This operator is pronounced “cons” (short for “construct”)

• Importantly, there are no other kinds of lists.
• Lists are an example of an inductive datatype.

A list value is either:
[] the empty list, sometimes called nil

or
v :: tail a head value v, followed by a list of the

remaining elements, the tail

Example Lists
To build a list, cons together elements, ending with the

empty list:

1::2::3::4::[]

“abc”::”xyz”::[]

a list of (four) ints

a list of (two) strings

(false::[])::(true::[])::[] a list of lists that each
contain booleans

[] the empty list

Explicitly parenthesized
‘::’ is an binary operator like + or ^; it takes an

element and a list of elements as inputs:

1::(2::(3::(4::[])))

“abc”::(”xyz”::[])

a list of four numbers

a list of two strings

true::[] a list of one boolean

[] the empty list

*Unlike + and ^, cons is right associative. a :: b :: c means a :: (b :: c) and not (a :: b) :: c

Convenient Syntax
Much simpler notation: enclose a list of elements in
[and] separated by ;

[1;2;3;4]

[“abc”;”xyz”]

a list of (four) ints

a list of (two) strings

[[false];[true]] a list of lists that each
contain booleans

[] the empty list

Convenient Syntax
The two ways of writing lists can be freely mixed.

1 :: [2;3;4] a list of (four) ints

NOT Lists
These are not lists:

[1;true;3;4]

1::2

different element types*

2 is not a list

3::[]::[] different element types

*Lists in OCaml are homogeneous – all of the list elements must be of the same type.

List Types
The type of lists of integers is written

int list

The type of lists of strings is written
string list

The type of lists of booleans is written
bool list

The type of lists of lists of strings is written
(string list) list

or
string list list

etc.

Which of the following expressions has the type
int list ?

1) [3; true]

2) [1;2;3]::[1;2]

3) []::[1;2]::[]

4) (1::2)::(3::4)::[]

5) [1;2;3;4]

Answer: 5

Which of the following expressions has the type
(int list) list ?

1) [3; true]

2) [1;2;3]::[1;2]

3) []::[1;2]::[]

4) (1::2)::(3::4)::[]

5) [1;2;3;4]

Answer: 3

Calculating With Lists
• Calculating with lists is like calculating with

arithmetic expressions. Just simplify each
subexpression in the list expression.
(2+3)::(12 / 5)::[]

A list is a value whenever all of its elements are values.

⟼ 5::2::[] because 12/5 ⇒ 2

⟼ 5::(12 / 5)::[] because 2+3 ⇒ 5

Inspecting lists
• So far, we’ve seen how to build lists in OCaml
• To write list-processing programs, we also need to be

able to inspect existing lists (so that we can process
their parts)…

Pattern Matching
OCaml provides a pattern matching construct for inspecting a list and
naming its subcomponents.

Case analysis is justified because there are only two shapes a list can have.
Note that first and rest are identifiers that are bound in the body of
the branch

– first names the head of the list; its type is the element type.
– rest names the tail of the list; its type is the list type

The type of the match expression is the (one) type shared by its branches.

let foo (l : int list) : int =
begin match l with
| [] -> 42
| first::rest -> first+10
end

match expression
syntax is:

begin match … with
| … -> …
| … -> …

end

case
branches

Calculating with match
• Consider how to evaluate a match expression:
foo [1;2;3]
⟼
begin match [1;2;3] with
| [] -> 42
| first::rest -> first + 10

end

Calculating with match
• Consider how to evaluate a match expression:
foo [1;2;3]
⟼
begin match 1::(2::(3::[])) with
| [] -> 42
| first::rest -> first + 10

end

Note: [1;2;3] means 1::(2::(3::[]))

Calculating with match
• Consider how to evaluate a match expression:
foo [1;2;3]
⟼
begin match 1::(2::(3::[])) with
| [] -> 42
| first::rest -> first + 10

end

match checks each branch in sequence:

(1). pattern [] does not match 1::(2::(3::[]))

Calculating with match
• Consider how to evaluate a match expression:
foo [1;2;3]
⟼
begin match 1::(2::(3::[])) with
| [] -> 42
| first::rest -> first + 10

end

match checks each branch in sequence:

(1). pattern [] does not match 1::(2::(3::[]))
(2). pattern first::rest does match 1::(2::(3::[]))

first = 1
rest = (2::(3::[]))

Calculating with match
• Consider how to evaluate a match expression:
foo [1;2;3]
⟼
begin match [1;2;3] with
| [] -> 42
| first::rest -> first + 10

end
⟼
1 + 10

⟼
11

match checks each branch in sequence:

(1). pattern [] does not match 1::(2::(3::[]))
(2). pattern first::rest does match 1::(2::(3::[]))

first = 1
rest = (2::(3::[]))

…so: substitute in that branch.

The Inductive Nature of Lists

• Why is this well-defined? The definition of list mentions ‘list’!
• Solution: ‘list’ is inductive:

– The empty list [] is the (only) list of 0 elements
– To construct a list of n+1 elements, add a head element to an existing

list of n elements
– The set of list values contains all and only values constructed this way

• Corresponding computation principle: recursion

A list value is either:
[] the empty list, sometimes called nil

or
v :: tail a head value v, followed by a list value

containing the remaining elements, the tail

Recursion

• Example:
length 1::2::3::[] = 1 + (length 2::3::[])
length 2::3::[] = 1 + (length 3::[])
length 3::[] = 1 + (length [])
length [] = 0

Recursion principle:
Compute a function value for a given input by
combining the results for strictly smaller
subcomponents of the input.
– The structure of the computation follows the inductive

structure of the input.

Recursion Over Lists in Code

let rec length (l : string list) : int =
begin match l with
| [] -> 0
| (x :: rest) -> 1 + length rest
end

The function calls itself recursively so
the function declaration must be
marked with rec.

Lists are either empty or nonempty.
Pattern matching determines which.

If the list is non-empty, then “x”
is the first string in the list and “rest”
is the remainder of the list.

Patterns specify the structure of
the value and (optionally) give
names to parts of it.

Calculating with Recursion
length [“a”; “b”]

⟼ (substitute the list for l in the function body)
begin match “a”::“b”::[] with
| [] -> 0
| (x :: rest) -> 1 + length rest
end

⟼ (second case matches with rest = “b”::[])
1 + (length “b”::[])

⟼ (substitute the list for l in the function body)
1 + (begin match “b”::[] with

| [] -> 0
| (x :: rest) -> 1 + length rest
end)

⟼ (second case matches again, with rest = [])
1 + (1 + length [])

⟼ (substitute [] for l in the function body)
…

⟼ 1 + 1 + 0 ⇒ 2

let rec length (l:string list) : int=
begin match l with
| [] -> 0
| (x :: rest) -> 1 + length rest
end

Recursive function patterns
Recursive functions over lists follow a general pattern:

let rec length (l : string list) : int =
begin match l with
| [] -> 0
| (x :: rest) -> 1 + length rest
end

let rec contains (l:string list) (s:string) : bool =
begin match l with
| [] -> false
| (x :: rest) -> s = x || contains rest s
end

Structural Recursion Over Lists
Structural recursion builds an answer from smaller components:

The branch for [] calculates the value (f []) directly
– this is the base case of the recursion

The branch for hd::rest calculates f (hd::rest) given
hd and (f rest).
– this is the inductive case of the recursion

let rec f (l : … list) … : … =
begin match l with
| [] -> …
| (hd :: rest) -> … f rest …
end

Design Pattern for Recursion

1. Understand the problem
What are the relevant concepts and how do they relate?

2. Formalize the interface
How should the program interact with its environment?

3. Write test cases
• If the main input to the program is an immutable list, make

sure the tests cover both empty and non-empty cases
4. Implement the required behavior

• If the main input to the program is an immutable list, look for
a recursive solution…
• Is there a direct solution for the empty list?
• Suppose someone has given us a partial solution that works for

lists up to a certain size. Can we use it to build a better
solution that works for lists that are one element larger?

