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Recap: Binary Trees

trees with (at most) two branches



Representing trees in OCaml
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type tree =
| Empty
| Node of tree * int * tree

Empty

Node (Empty, 0, Empty)

Node (Node (Empty, 0, Empty),
1,
Node (Empty, 3, Empty))
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let t : tree =
Node (Empty, 0, Node

(Node (Empty, 1, Empty), 2, Empty))
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let t : tree =
Node (Empty, 2, Node

(Node (Empty, 0, Empty), 1, Empty))

let t : tree =
Node (Empty, 2, Node

(Empty, 1, Node (Empty, 0, Empty)))

let t : tree =
Node (Empty, 0, Node

(Empty, 2, Node (Empty, 1, Empty)))
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Which definition constructs the pictured tree?  

Answer: 4



Some functions on trees
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(* counts the number of nodes in the tree *)
let rec size (t:tree) : int =

begin match t with
| Empty -> ???
| Node(l,x,r) -> ???
end

(* counts the longest path from the root to a leaf *)
let rec height (t:tree) : int =

begin match t with
| Empty -> ???
| Node(l,x,r) -> ???
end



Some functions on trees
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(* counts the number of nodes in the tree *)
let rec size (t:tree) : int =

begin match t with
| Empty -> 0
| Node(l,_,r) -> 1 + (size l) + (size r)
end

(* counts the longest path from the root to a leaf *)
let rec height (t:tree) : int =

begin match t with
| Empty -> 0
| Node(l,_,r) -> 1 + max (height l) (height r)
end



Trees as Containers

See tree.ml and treeExamples.ml



Trees as Containers
• Like lists, binary trees aggregate data
• As we did for lists, we can write a function to determine 

whether the data structure contains a particular element

type tree =
| Empty
| Node of tree * int * tree
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Searching for Data in a Tree

• This function searches through the tree, looking for n
• In the worst case, it might have to traverse the entire tree
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let rec contains (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) ->

x = n
|| contains lt n 
|| contains rt n

end



Recursive Tree Traversals
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Pre-Order
Root – Left – Right 
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In Order
Left – Root – Right 
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Post-Order
Left – Right – Root 
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(* Code for Pre-Order Traversal *)
let rec f (t:tree) : … =
begin match t with
| Empty -> …
| Node(l, x, r) ->
let root = … x … in (* process root *)
let left = f l in (* recursively process left subtree *)
let right = f r in (* recursively process right subtree *)
combine root left right       

end

Other traversals
vary the order
in which these
are computed…
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In what sequence will the 
nodes of this tree be visited 
by a post-order traversal?

1. [0;1;6;2;7;8]
2. [0;1;2;6;7;8]
3. [2;1;0;7;6;8]
4. [7;8;6;2;1;0]
5. [2;1;7;8;6;0]

CIS120 Answer: 5
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Post-Order
Left – Right – Root 
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What is the result of applying 
this function on this tree?

1. []

2. [1;2;3;4;5;6;7]

3. [1;2;3;4;5;7;6]

4. [4;2;1;3;5;6;7]

5. [4]

6. [1;1;1;1;1;1;1]

7. none of the above
Answer: 3

let rec inorder (t:tree) : int list =
begin match t with
| Empty -> []
| Node (left, x, right) ->

inorder left @ (x :: inorder right)
end
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Ordered Trees

Big idea: find things faster by searching less



Searching for Data in a Tree

• This function searches through the tree, looking for n
• In the worst case, it might have to traverse the entire tree
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let rec contains (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) ->

x = n
|| contains lt n 
|| contains rt n

end



Search during (contains t 8)
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Key Insight:  
Ordered data can be searched more quickly

– This is why telephone books are arranged alphabetically
– But requires the ability to focus on (roughly) half  of the current data



Binary Search Trees
• A binary search tree (BST) is a binary tree with some 

additional invariants*:

• The BST invariant means that container functions can take 
time proportional to the height instead of the size of the tree.
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• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

*A data structure invariant is a set of constraints about the way that the data is organized.
“types” (e.g. list or tree) are one kind of invariant, but we often impose additional constraints.



An Example Binary Search Tree
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Note that the BST
invariants hold for 
this tree.

• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST



Search in a BST: (lookup t 8)
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Searching a BST

• The BST invariants guide the search.
• Note that lookup may return an incorrect answer if the input 

is not a BST!
– This function assumes that the BST invariants hold of t.

(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =

begin match t with
| Empty -> false
| Node(lt,x,rt) ->

if x = n then true
else if n < x then lookup lt n
else lookup rt n

end
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• Node(lt,x,rt) is a BST if

- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

Is this a BST??

1. yes
2. no

Answer: no, 5 to the left of 4



Manipulating BSTs

Inserting an element

insert : tree -> int -> tree



Inserting into a BST
• Suppose we have a BST t and a new element n, and we 

wish to compute a new BST containing all the elements 
of t together with n
– Need to make sure the tree we build is really a BST – i.e., make sure to put 

n in the right place!

• This way we can build a BST containing any set of 
elements we like: 
– Starting from the Empty BST, apply this function repeatedly to 

get the BST we want
– If insertion preserves the BST invariants, then any tree we get 

from it will be a BST by construction
• No need to check!

– Later: we can also “rebalance” the tree to make lookup efficient 
(NOT in CIS 120; see CIS 121)

First step: find the right place…



Inserting a new node: (insert t 4)
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Inserting a new node: (insert t 4)
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Inserting Into a BST

• Note the similarity to searching the tree.
• Assuming that t is a BST, the result is also a BST.  (Why?)
• Note that the result is a new tree with (possibly) one more 

Node; the original tree is unchanged

(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->

if x = n then t
else if n < x then Node(insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

Critical point!


