Programming Languages and Techniques (CIS120)

Lecture 6

Binary Search Trees

(Lecture notes Chapter 7)

Recap: Binary Trees

trees with (at most) two branches

Representing trees in OCaml

Which definition constructs the pictured tree?

Some functions on trees

```
(* counts the longest path from the root to a leaf *)
let rec height (t:tree) : int =
    begin match t with
    l Empty -> ???
    l Node(l,x,r) -> ???
    end
```

Some functions on trees

```
(* counts the number of nodes in the tree *)
let rec size (t:tree) : int =
  begin match t with
  Empty -> 0
  Node(l,_,r) -> 1 + (size l) + (size r)
  end
(* counts the longest path from the root to a leaf *)
let rec height (t:tree) : int =
  begin match t with
  I Empty → Ø
  | Node(l, r) \rightarrow 1 + max (height l) (height r)
  end
```

Trees as Containers

See tree.ml and treeExamples.ml

Trees as Containers

- Like lists, binary trees aggregate data
- As we did for lists, we can write a function to determine whether the data structure *contains* a particular element

```
type tree =
I Empty
I Node of tree * int * tree
```

Searching for Data in a Tree

- This function searches through the tree, looking for n
- In the worst case, it might have to traverse the *entire tree*

Recursive Tree Traversals

Post-Order Left – Right – Root

Answer: 3

Ordered Trees

Big idea: find things faster by searching less

Searching for Data in a Tree

- This function searches through the tree, looking for n
- In the worst case, it might have to traverse the *entire tree*

Search during (contains t 8)

CIS120

Key Insight:

Ordered data can be searched more quickly

- This is why telephone books are arranged alphabetically
- But requires the ability to focus on (roughly) half of the current data

Binary Search Trees

 A binary search tree (BST) is a binary tree with some additional invariants*:

- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x
- Empty is a BST
- The BST invariant means that container functions can take time proportional to the **height** instead of the **size** of the tree.

*A data structure *invariant* is a set of constraints about the way that the data is organized. "types" (e.g. list or tree) are one kind of invariant, but we often impose additional constraints.

An Example Binary Search Tree

Search in a BST: (lookup t 8)

Searching a BST

```
(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
    begin match t with
    I Empty -> false
    Node(lt,x,rt) ->
        if x = n then true
        else if n < x then lookup lt n
        else lookup rt n
    end</pre>
```

- The BST invariants guide the search.
- Note that lookup may return an incorrect answer if the input is *not* a BST!
 - This function *assumes* that the BST invariants hold of t.

- all nodes of rt are > x

• Empty is a BST

Answer: no, 5 to the left of 4

Manipulating BSTs

Inserting an element

insert : tree -> int -> tree

Inserting into a BST

- Suppose we have a BST t and a new element n, and we wish to compute a new BST containing all the elements of t together with n
 - Need to make sure the tree we build is really a BST i.e., make sure to put n in the right place!
- This way we can build a BST containing any set of elements we like:
 - Starting from the Empty BST, apply this function repeatedly to get the BST we want
 - If insertion *preserves* the BST invariants, then any tree we get from it will be a BST *by construction*
 - No need to check!
 - Later: we can also "rebalance" the tree to make lookup efficient (NOT in CIS 120; see CIS 121)

Inserting a new node: (insert t 4)

Inserting a new node: (insert t 4)

Inserting Into a BST

- Note the similarity to searching the tree.
- Assuming that t is a BST, the result is also a BST. (Why?)
- Note that the result is a *new* tree with (possibly) one more Node; the original tree is unchanged
 Critical point!