Programming Languages and Techniques (CIS120)

Lecture 7

Binary Search Trees

(Chapters 7 & 8)

Recap: Ordered Trees

Big idea: find things faster by searching less

Key Insight:

Ordered data can be searched more quickly

- This is why telephone books are arranged alphabetically
- Requires the ability to focus on (roughly) half of the current data

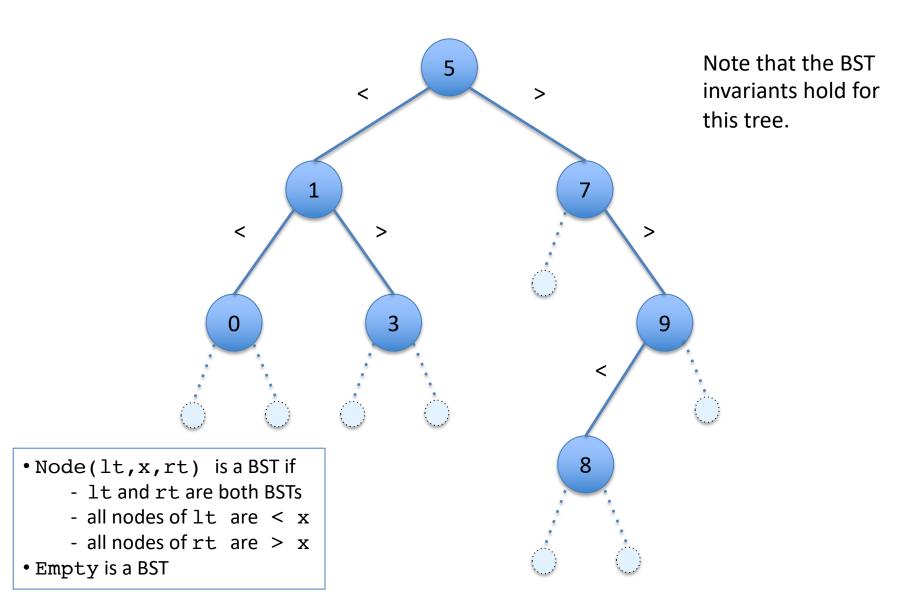
Binary Search Trees

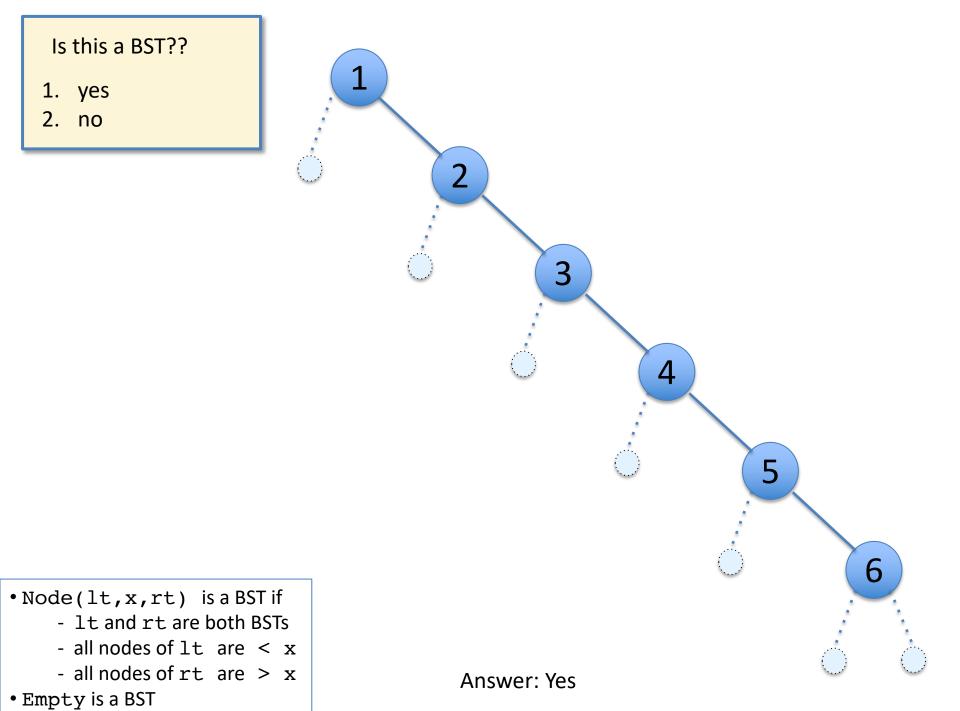
• A *binary search tree* (BST) is a binary tree with some additional *invariants*:

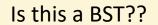
- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
- Empty is a BST

 The BST invariant means that container functions can take time proportional to the height instead of the size of the tree.

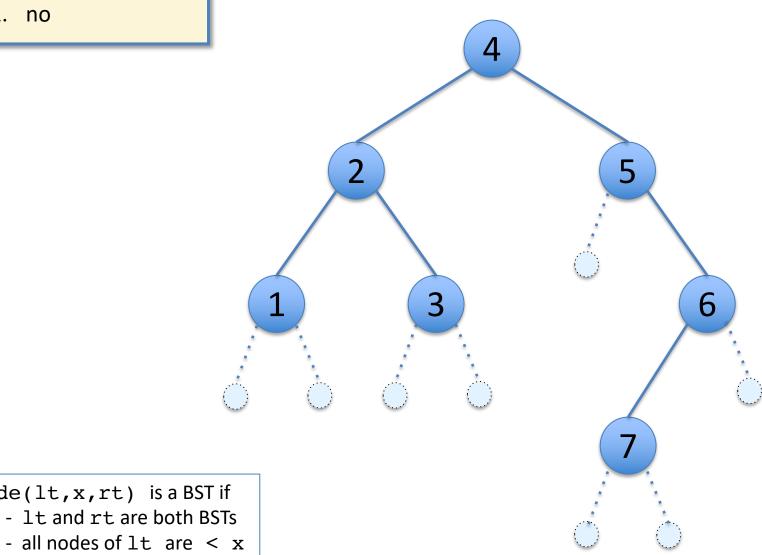
An Example Binary Search Tree





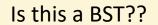


- 1. yes
- 2. no

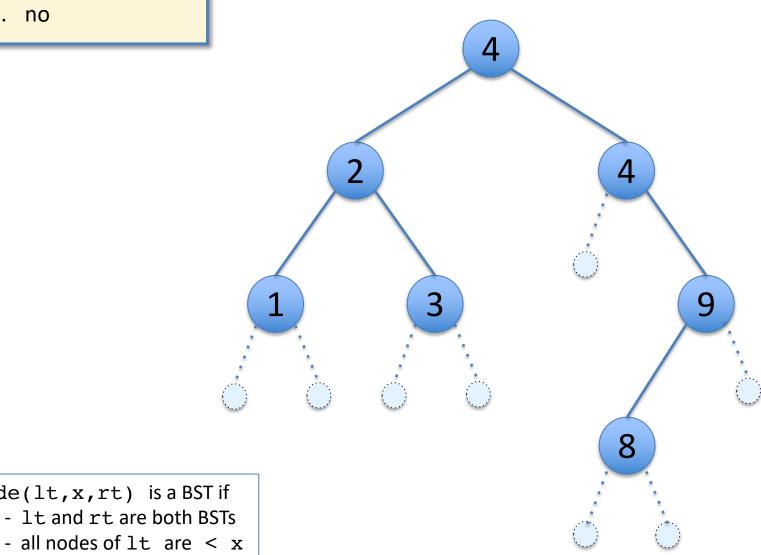


- Node(lt,x,rt) is a BST if
 - all nodes of lt $\mbox{are} < x$
 - all nodes of rt are > x
- Empty is a BST

Answer: no, 7 to the left of 6



- 1. yes
- 2. no

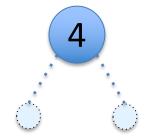


- Node(lt,x,rt) is a BST if
 - all nodes of lt are < x
 - all nodes of rt are > x
- Empty is a BST

Answer: no, 4 to the right of 4

Is this a BST??

- 1. yes
- 2. no



- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < xall nodes of rt are > x
- Empty is a BST

Answer: yes

Is this a BST??

- 1. yes
- 2. no

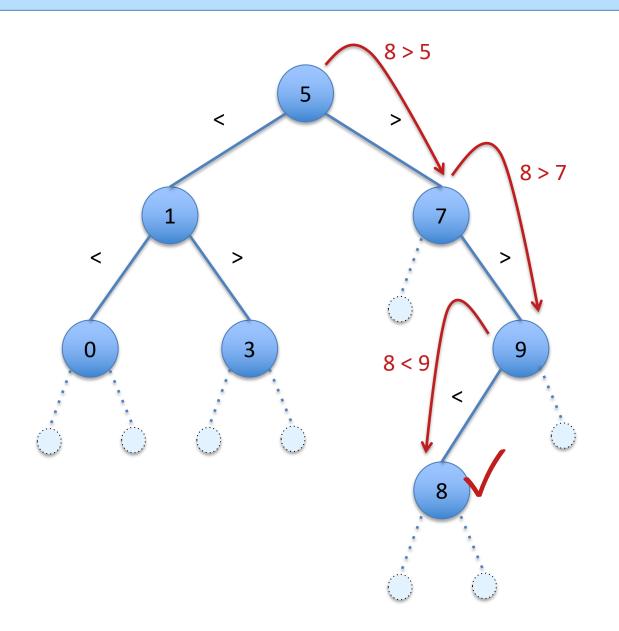
- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < xall nodes of rt are > x
- Empty is a BST

Answer: yes

Searching a BST

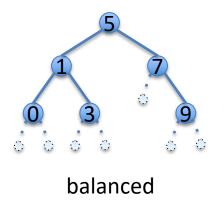
- The BST invariants guide the search.
- Note that lookup may return an incorrect answer if the input is not a BST!
 - This function assumes that the BST invariants hold of t.

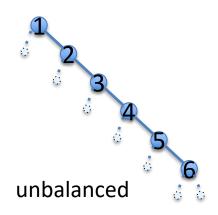
Search in a BST: (lookup t 8)



BST Performance

- lookup takes time proportional to the height of the tree.
 - not the size of the tree (as it did with contains for unordered trees)
- In a *balanced tree*, the lengths of the paths from the root to each leaf are (almost) *the same*.
 - no leaf is too far from the root
 - the height of the BST is minimized
 - the height of a balanced binary tree is roughly log₂(N) where N is the number of nodes in the tree





see bst.ml

DEMO

Manipulating BSTs

Inserting an element

insert : tree -> int -> tree

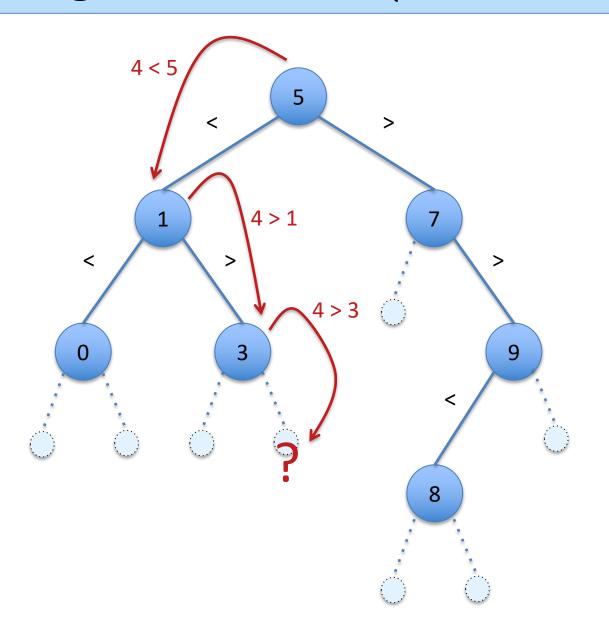
"insert t x" returns a new tree containing x and all of the elements of t

Inserting into a BST

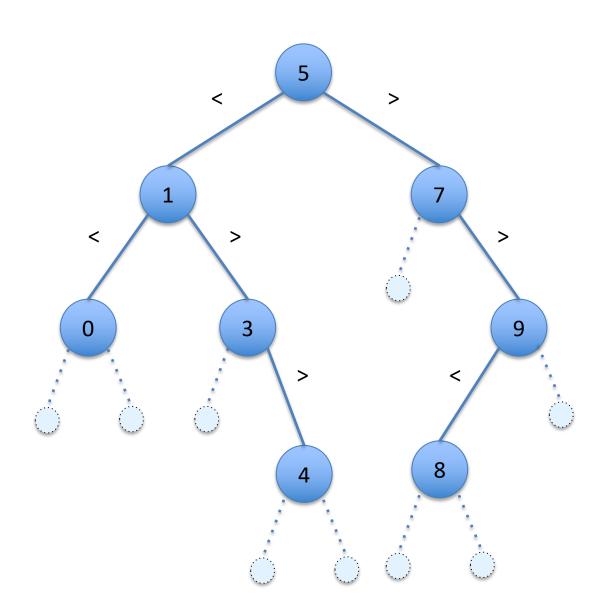
- Challenge: can we make sure that the result of insert really is a BST?
 - i.e., the new element needs to be in the right place!

- Payoff: we can build a BST containing any set of elements
 - Starting with Empty, apply insert repeatedly
 - If insert preserves the BST invariants, then any tree we get from it will be a BST by construction
 - No need to check!
 - Later: we can also "rebalance" the tree to make lookup efficient
 (NOT in CIS 120; see CIS 121)
 First step: find the right place...

Inserting a new node: (insert t 4)



Inserting a new node: (insert t 4)



Inserting Into a BST

```
(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
  begin match t with
  | Empty -> Node(Empty,n,Empty)
  | Node(lt,x,rt) ->
     if x = n then t
     else if n < x then Node(insert lt n, x, rt)
     else Node(lt, x, insert rt n)
end</pre>
```

- Note the similarity to searching the tree.
- Assuming that t is a BST, the result is also a BST. (Why?)

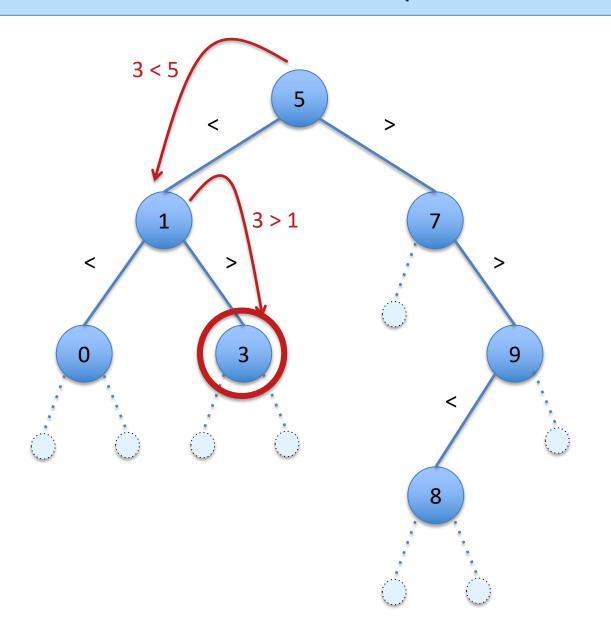
Manipulating BSTs

Deleting an element

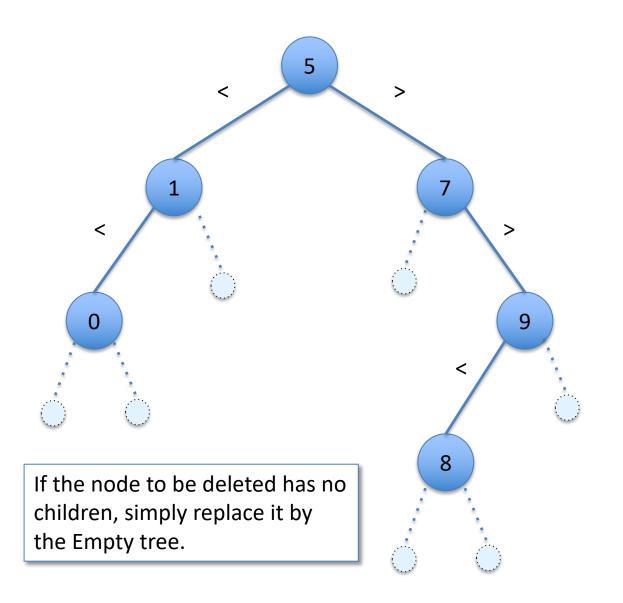
delete: tree -> int -> tree

"delete t x" returns a tree containing all of the elements of t except for x

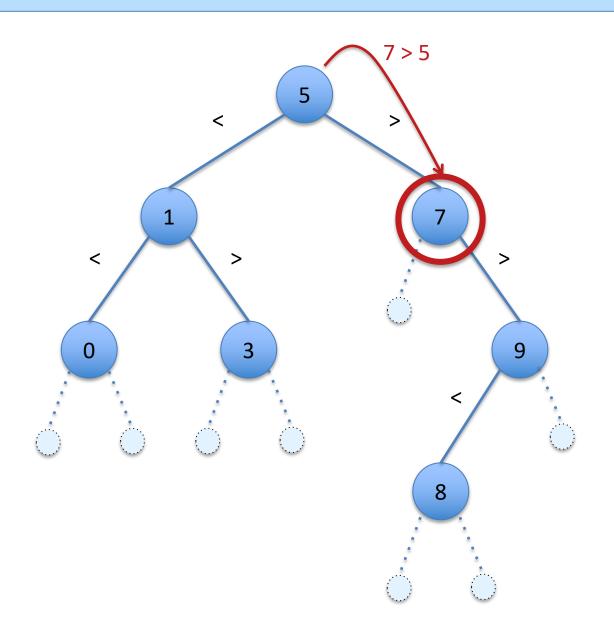
Deletion - No Children: (delete t 3)



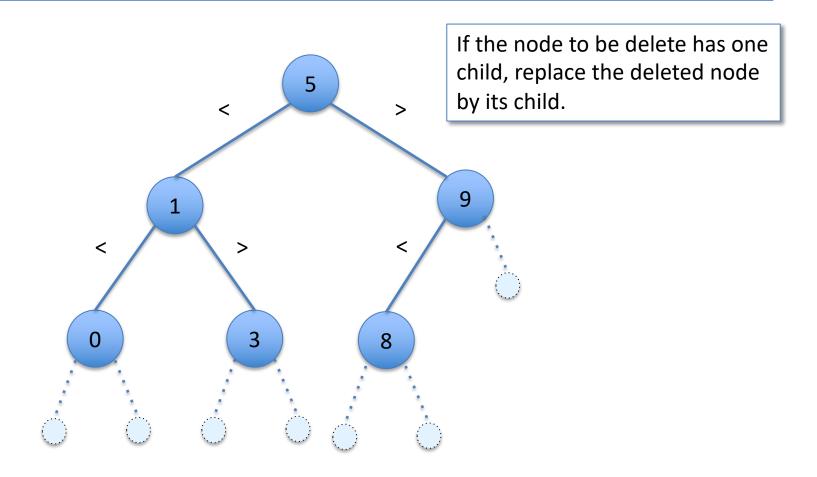
Deletion - No Children: (delete t 3)



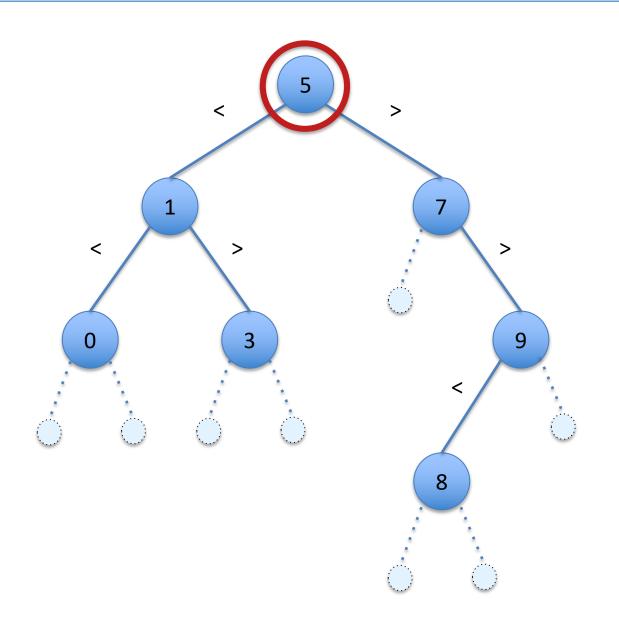
Deletion - One Child: (delete t 7)



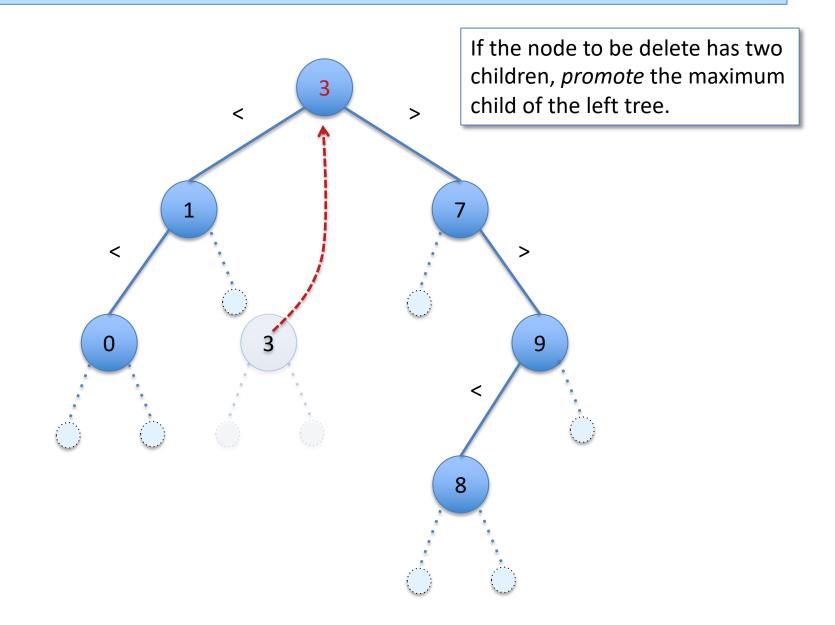
Deletion - One Child: (delete t 7)



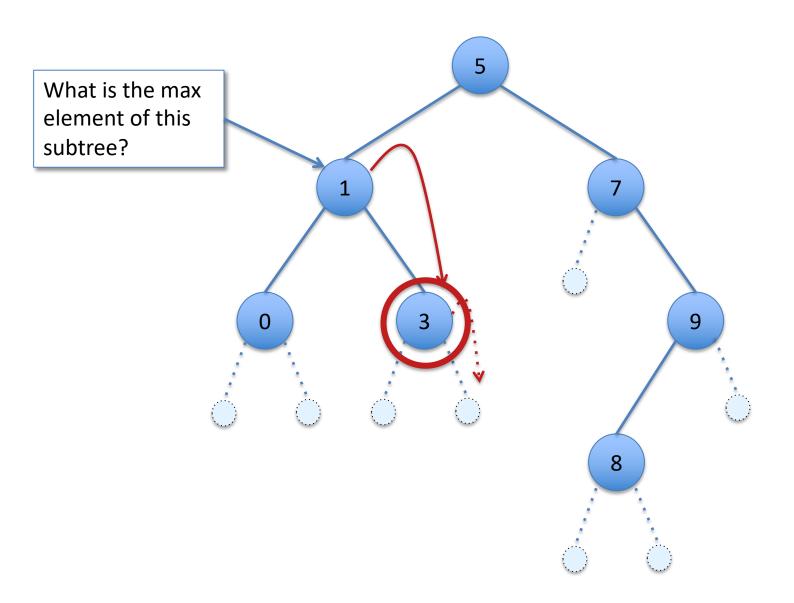
Deletion - Two Children: (delete t 5)



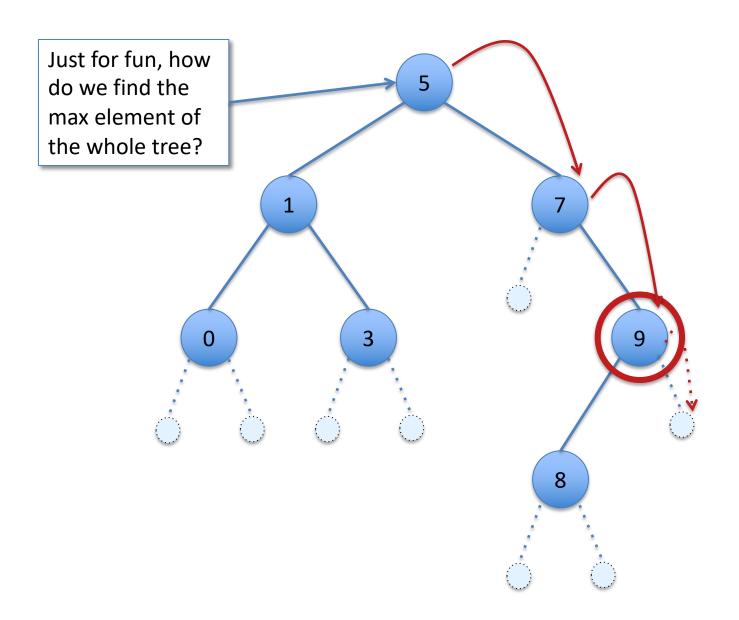
Deletion - Two Children: (delete t 5)



How to Find the Maximum Element?



How to Find the Maximum Element?



Tree Max

```
let rec tree_max (t:tree) : int =
  begin match t with
  | Node(_,x,Empty) -> x
  | Node(_,_,rt) -> tree_max rt
  | _ -> failwith "tree_max called on Empty"
  end
```

- BST invariant guarantees that the maximum-value node is farthest to the right
- Note that tree_max is a partial* function
 - Fails when called with an empty tree
- Fortunately, we never need to call tree_max on an empty tree
 - This is a consequence of the BST invariants and the case analysis done by the delete function

^{*} Partial, in this context, means "not defined for all inputs".

Code for BST delete

bst.ml

Deleting From a BST

```
let rec delete (t: tree) (n: int) : tree =
  begin match t with
  I Empty -> Empty
  Node(lt, x, rt) ->
   if x = n then
      begin match (lt, rt) with
      I (Empty, Empty) -> Empty
      I (Node _, Empty) -> lt
      | (Empty, Node _) -> rt
      | _ -> let m = tree_max lt in
        Node(delete lt m, m, rt)
    end
    else if n < x then Node(delete lt n, x, rt)
    else Node(lt, x, delete rt n)
end
```

Subtleties of the Two-Child Case

- Suppose Node(lt,x,rt) is to be deleted and lt and rt are both themselves nonempty trees.
- Then:
 - 1. There exists a maximum element, m, of lt (Why?)
 - 2. Every element of rt is greater than m (Why?)
- To promote m we replace the deleted node by: Node(delete lt m, m, rt)
 - I.e. we recursively delete m from lt and relabel the root node m
 - The resulting tree satisfies the BST invariants

If we insert a label n into a BST and then immediately delete n, do we always get back a tree of exactly the same shape?

- 1. yes
- 2. no

Answer: no (what if the node was in the tree to begin with?)

If we insert a value n into a BST that does not already contain n and then immediately delete n, do we always get back a tree of exactly the same shape?

- 1. yes
- 2. no

Answer: yes

If we delete n from a BST (containing n) and then immediately insert n again, do we always get back a tree of exactly the same shape?

- 1. yes
- 2. no

Answer: no (e.g., what if we delete the item at the root node?)