Programming Languages
and Techniques
(C1S120)

Lecture 8

Generics & First-class functions
Chapters 8 and 9

Generic Functions and Data

Wow, implementing BSTs took quite a bit of typing... Do we
have to do it all again if we want to use BSTs containing
strings, and again for characters, and again for floats, and...?

or

How not to repeat yourself, Part I.

Structurally Identical Functions

* Observe: many functions on lists, trees, and other datatypes
don’t depend on the contents, only on the structure.

* Compare:

CIS120

let rec length (l: int list) : int =
begin match 1 with
| [] -> 0
| _::tl -> 1 + length tl

end Ao

let rec length (l: string list) : int -

begin match 1 with

| [] -> 0

| _::tl -> 1 + length tl
end

The functions are
identical, except
for the type
annotation.

Notation for Generic Types

OCaml allows defining functions with generic types

let rec length (l1:'a list) : int =
begin match 1 with
| [] > 0
| _::tl -> 1 + (length tl1)
end

Notation: "a isa type variable, indicating that the function
length can be used ona t list for any type t.

Examples:
— length [1;2;3] use length on an int list
— length [“a”;”b”;”c”] use length on a string list

Idea: OCaml fills in "a whenever length is used

CIS120

Generic List Append

Note that the two input
lists must have the same
type of elements.

N

The return type is the
same as the inputs.

No \o W.
let rec append (11:'a list) (12:'a list) : 'a list =

begin match 11 with
| [1 > 12
| h:2tl -> h::(append tl 12)

ené/r

!

Pattern matching works over generic types!

In the body of the branch:
h has type "a
tl hastype 'a l1ist

CIS120

Zip function

 Combine two lists into one list
— ignore elements from longer list if they are not the same length

let rec zip (11:int list) (12:string list)
: (int*string) list =
begin match (11,12) with
| (hl::t1, h2::t2) -> (hl,h2)::(zip t1 t2)
— > []

end

zip [1;2;3] ["a";"b";"c")
—1(1,"a"; (Z,"b"; (3,

* Does it matter what type of lists these are?

CIS120

Generic Zip

Functions can operate
over multiple generic

types.

. ° \o °
let rec zip (11:'a list) (12:'b list) : ('a*'b) list =
begin match (11,12) with
| (hl::t1, h2::t2) -> (hl,h2)::(zip t1 t2)
l _ > [

end

* Distinct type variables can be instantiated differently:
Z.Lp [1;2;3] I:“a”;”b”;”c”:l
« Here, 'aisinstantiated to 1nt, "b to string

e Result is Intuition: OCaml tracks

[(1,%a”);(2,“b”);(3,“c™)] instantiations of type variables

. " : . ('a and 'b) and makes sure they
of type (int str'lng) List are used consistently

CIS120

Generic Zip

Functions can operate
over multiple generic

types.

. ° \o °
let rec zip (11:'a list) (12:'b list) : ('a*'b) list =
begin match (11,12) with
| (hl::t1, h2::t2) -> (hl,h2)::(zip t1 t2)
l _ > [

end

* Distinct type variables do not need to be instantiated differently:

zip [1;2;3] [4;5;6]
 Here, "aisinstantiated to 1nt, "bto 1nt

e Result is Intuition: OCaml tracks

[(1,4);(2,5);(3,6)] instantiations of type variables

of type (int " int) list (‘aand 'b) and.makes sure they
are used consistently

CIS120

User-Defined Generic Datatypes

* Recall our integer tree type:

type tree
| Empty
| Node of tree * int * tree

* We can define a generic version by adding a type parameter,
like this: Parameter "a

used here

type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

~ "

. —_—

Note that the recursive
uses of tree also
mention 'a

CIS120

User-Defined Generic Datatypes

 BST operations can be generic too; the only change is to the
type annotation

(* Insert n into the BST t *)

let rec insert (t:'a tree) (n:'a) : 'a tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
1f x = n then t
else n < x then Node(insert 1t n, x, rt)

else Nodeée %\\z:\jnsert rt n)

end

N\

Equality and comparison are generic — they work for any
type of data.

CIS120

Does the following function typecheck?

let f (1 : "a 1list) : 'b list =
begin match 1 with

| [] -> true::1

| _::rest -> 1::1

end

1. yes
2. ho

Answer: no: even though the return type is generic, the two branches
must agree (so that ‘b can be consistently instantiated).

CIS120

Does the following code typecheck?

let f X : "a) : '"a =

;5 print_endline (f “hello”)

1. yes
2. no

Answer: no, the type annotations and uses of f aren’t consistent.

However it is a bit subtle: without the use (f "hello") the code would be correct —
so long as all uses of f provide only 'int' the code is consistent! Despite the

cco generic” type annotation, f really has type int -> int.

Higher-order Programs

or

How not to repeat yourself, Part Il

First-class Functions

* You can pass a function as an argument to another function:

let twice (f:int->1nt) (x:int) : int =

f (f x)

function type: argument of type
let add_one (z:int) : int =z + 1 int and result of type int

let add_two (z:int) : int = z + 2

let y = twice add_one 3
let % ~ fwice add_two 3 \ The function add_one is passed as
- an argument to twice!

 You can return a function as the result of another function.

let make_incr (n:int) : int->1int =
let helper (x:1int) : int =
n + X
1in Argument is an expression
helper that produces a function

let y = twice (make_incr 1) 3

CIS120

Functions as Data

* You can store functions in data structures

let add_one (x:1int) : int = x+1
let add_two (x:1int) : int = x+/
let add_three (x:1int) : i1nt = x+3

let func_list : (int -> 1nt) list =
[add_one; add_two; add_three]$\\\\}

A list of functions

let func_listl : (int -> int) list =
[make_incr 1; make_incr Z2; make_incr 3]

\—

A list of expressions that produce functions

CIS120

Simplifying First-Class Functions

let twice (f:int->1nt) (x:1int)
f (f x)

: 1nt =

let add_one (z:int) : int =z + 1

twice add_one 3
add_one (add_one 3)
add_one (3 + 1)
add_one 4

4 + 1

5

111 1]

CIS120

substitute add_one for f, 3 for x

substitute 3 for z in add_one
3+1=4

substitute 4 for z in add_one

4+1=5

Simplifying First-Class Functions

let make_incr (n:int) : int->int =
let helper (x:1nt) : int = n + x 1n
helper

make_incr 3
substitute 3 for n
— let helper (x:int) = 3 + x 1n helper
— 227

CIS120

Simplifying First-Class Functions

let make_incr (n:int) : int->1int =
let helper (x:1nt) : int = n + x 1n
helper

make_incr 3
substitute 3 for n

— let helper (x:int) = 3 + x 1n helper

— fun (x:int) -> 3 + X Anonymous function value

}I \
keyword “fun”

“->” after arguments
no return type annotation

CIS120

Named function values

A standard function definition...

let add_one (x:1int) : 1int = x+1

really has two parts:

let add_one : int->int = fun (x:int) -> x+1

N \ J

\ h \ g
define a name for
the value

create a function value

The two definitions have the same type and behave exactly the same.
(The first is actually just an abbreviation for the second.)

CIS120

Anonymous functions

let add_one (z:int) : 1int
let add_two (z:int) : 1int
let y = twice add_one 3

o
N N
+ o+
N -

let w = twice add_two 3
let y = twice (fun (z:int) -> z+1) 3
let w =

twice\Ffun (z:1int) -> z+2) 3

) - > 4

Y

an expression that is a
function value

CIS120

Function Types

* Functions have types that look like this:
tin -> tout

 Examples:

int -> 1nt
1int -> bool * 1int
int -> 1int -> 1int Int 1nput

(int -> 1nt) -> 1nt function input

CIS120

Function Types

* Functions have types that look like this:
tin -> tout

 Examples:

Parentheses matter!

1int -> 1nt
int ->int ->int is equivalent to
int -> (int -> int) but not to

(int -> int) -> int

int -> (bool * 1nt)

int -> (int -> 1nt) Int 1nput

(int -> 1nt) -> 1nt function input

CIS120

Function Types

Hang on... did we just say that

int -> 1nt -> 1nt

and

int -> (int -> 1int)

mean the same thing??

Yes!

CIS120

2=1+1

The type of a function that takes two arguments

1int -> 1nt -> 1nt

is the same as the type of a function that takes one

argument and returns a function that takes one
argument.

int -> (int -> 1int)

We can exploit this in OCaml!

CIS120

Multiple Arguments

We can decompose a standard function definition

let sum (x : int) (y:int) : int = X + y

into parts

let sum = fun (x:int) -> \Fun (y:int) > x +)}
]
J

AW 4

\\
e

T Y g that returns a function value

define a variable with
that value

The two definitions have the same type and behave exactly the same

let sum : int -> int -> int

CIS120

Partial Application

let sum (x : int) (y:int) : int = x + vy

sum 3
— (fun (xX:int) -> fun (y:int) -> X + y) 3 definition
— fun (y:int) -> 3 + vy substitute 3 for x

CIS120

CIS120

What is the value of this expresssion?

let f (x:bool) (y:int) : int =
if x then 1 else y 1in

f true

1.1

2. true

3. fun (y:int) -> if true then 1 else y
4. fun (x:bool) -> if x then 1 else y

Answer: 3

What is the value of this expression?

let f (g : int->int) (y: int) : int =
gl+yin

f (fun (x:int) -> x + 1) 3

v p W N B
v o W N B

Answer: 5
CIS120

What is the type of this expression?

let f (g : int->int) (y: int) : int =
gl +yin

f (fun (x:int) -> x + 1)

1. 1int

2.1int -> 1int

3.1int -> int -> int

4. (int -> int) -> int -> int
5. 1ll-typed

Answer: 2

CIS120

What is the type of this expresssion?

[(fun (x:int) -> x + 1);
(fun (x:int) -> x - 1)]

1. 1int

2.1int -> 1int

3. (int -> int) list

4. int list -> int list
5. 111 typed

Answer: 3

CIS120

