Programming Languages
and Techniques
(C1S120)

Lecture 10

Abstract types: Sets
Chapter 10

Sets as Abstract Types

Mathematical Sets

Mathematical sets are collections of things: @

®

Empty Set: 1) no things

Nonempty Sets: {0, 1, 2, 3} four integers
{(0,1), (2,3)} two pointsin the plane
{true, false} two Boolean values

Set operations:
SUT union
SAT intersection

Predicates: XES “xis a member of set S”

CIS120

A set is a Collection

e Asetis acollection of elements
— we have operations for creating sets of elements
— we can ask whether elements are in a set

e Sets show up frequently in code

— Examples: set of students in a class, set of coordinates in a
graph, set of answers to a survey, set of data samples from
an experiment, ...

 Asetis alot like a list, except:

— Order doesn't matter }

— Duplicates don't matter
— It isn't built into OCaml

An element’s presence or absence in the
set is all that matters...

A Set is an Abstraction

A BST can implement (represent) a

set
— there is a way to represent an empty set
(Empty)
— there is a way to list all elements contained in
the set (inorder)

— there is a way to test membership (lookup)

— Can define union/intersection (with insert T T abstract view
and delete)

* BSTs do not have to represent sets @
* BSTs are not the only way to @
implement sets @

Three Example Representations of Sets

concrete represe ntation

abstract view

Alternate representation: Alternate representation:
unsorted linked list. reverse sorted array with

Index of next slot.

|

3::0::1:: 31,0 XX
concrete representation concrete representation
“abstract view ~ 7 abstract view

® ®
© ©
® ®

A Set is an Abstract Type

An abstract type is defined by its interface
and its properties, not its representation

Interface: defines the type and operations

There is a type of sets

There is an empty set

There is a way to add elements to make a bigger set
There is a way to list all elements in a set

There is a way to test membership

Properties: define how the operations
interact with each other

Elements that were added can be found in the set

Adding an element a second time doesn’t change the
listing of elements

Adding elements in a different order doesn’t change the
listing of elements

When we use a set, we can forget about
the representation!

concrete represe ntation

abstract view

®
©
®

OCaml directly supports the declaration of
abstract types via signatures

The name

Set Signature

of the signature

TN

The s1g keyword indicates

P

end

N

/ an interface declaration
module type SET = sig

type 'a set <«

Type declaration has no

val empty
val add

val member
val equals

val set_of_list

“right-hand side” — its
representation is abstract!

set

: 'a

: 'a > 'a set -> 'a set

: 'a -> 'a set -> bool

: 'a set -> 'a set -> bool
: 'a 1Tist -> 'a set

T~

>~

The interface members are the (only!)
means of manipulating the abstract type.

Signature (a.k.a. interface): defines operations on the type

Implementing sets

There are many ways to implement sets
— lists, trees, arrays, etc.

How do we choose which implementation?
— Depends on the needs of the application...
— How often is ‘member’ used vs. ‘add’?
— How big can the sets be?

How do we preserve the invariants of the implementation?

Many such implementations are of the flavor

“asetis a ... with some invariants”

— Asetis a list with no repeated elements. j,ygrignt: a property that
— Aset is a tree with no repeated elements remains unchanged when

— Asetis a binary search tree a specified transformation is
applied.

A module implements an interface

* Animplementation of the set interface will look like this:

Name of the module

Signature that it implements

| The struct keyword indicates

a module implementation
module BSTSet : SI‘-_’(str'uct

E* Lmplementations of type and operations *)

ena

Implement the set Module

module BSTSet : SET = struct

type 'a tree =
| Empty
| Node of 'a tree * 'a * "a tree

Module must define (give a
concrete representation to) the
type declared in the signature

type 'a set = 'a tree o

let empty : 'a set = Empty

ena

 The implementation must include everything promised by the interface

— It can contain more functions and type definitions (e.g. auxiliary or helper
functions) but those cannot be used outside the module

— The types of the provided implementations must match the signature

Abstract vs. Concrete BSTSet

concrete represe ntation

abstract view

®
©
®

module BSTSet : SET = struct
type 'a tree = ..
type 'a set = 'a tree
let empty : 'a set = Empty
let add (x:'a) (s:'a set) :'a set =
... (* can treat s as a tree *)

end
_____________ -
I_module type SET = sig I
type 'a set
—==) val empty : 'a set f——-
val add : 'a -> 'a set -> 'a set I
| end

(* A client of the BSTSet module *)
(* Cannot treat a set as a tree *)
;3 open BSTSet

let s : 1nt set
= add @ (add 3 (add 1 empty))

Another Implementation

module ULSet : SET =
struct

A different definition for
type 'a set = 'a list <« the type set

let empty : 'a set = []

end

Abstract vs. Concrete ULSet

S

0::3::1::[]

concrete represe ntation

abstract view

®
©
®

module ULSet : SET = struct
type 'a set = 'a list
let empty : 'a set = []
let add (x:'a) (s:'a set) :'a set =
X::s (* can treat s as a list *)

end
_____________ -
rFnodule type SET = sig I
type 'a set
—==) val empty : 'a set f——-
val add : 'a -> 'a set -> 'a set I
| end

(* A client of the ULSet module *)
(* Cannot treat a set as a list *)
;3 open ULSet

let s : 1nt set
= add @ (add 3 (add 1 empty))

Client code doesn’t change!

Testing (and using) sets

* Use “Open” to bring all names defined in the interface into
scope

* Any names that were already in scope are shadowed

;5 open ULSet

let sl = add 3 empty
let s2 = add 4 empty
let s3 = add 4 sl

let test (O : bool = (member 3 sl)
;3 run_test "ULSet.member 3 s1" test

let test () : bool = (member 4 s3)
;3 run_test "ULSet.member 4 s3" test

Testing

(and using) sets

e Alternatively, use the “dot” syntax:
ULSet.<member>

Note: Module names must be capitalized in OCaml

Useful when two modules define the same operations

let s1 = ULSet.add
let s2 = ULSet.add
let s3 = ULSet.add

let test (O : bool
;5 run_test "ULSet.

let test (O : bool
;5 run_test "ULSet.

3 ULSet.empty
4 ULSet.empty
4 sl

= (ULSet.member 3 sl1)
member 3 s1" test

= (ULSet.member 4 s3)
member 4 s3" test

Does this code type check?

module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> "a set -> 'a set
end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

ena

;3 open BSTSet

let s1 : int set = add 1 empty

1. yes
2. no

Answer: yes

CIS120

Does this code type check?

1. yes
2. no

;3 open BSTSet
let s1 = add 1 empty

let 11 = begin match sl with
| Node (_,k,_) -> k
| Empty -> failwith “impossible”

end

module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

ena

CIS120

Answer: no, add constructs a set, not a tree

Does this code type check?

module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty
let size (t : 'a tree) : int = ..

ena

;3 open BSTSet
let s1 = add 1 empty
let 11 = size sl

1. yes
2. no

Answer: no, cannot access helper functions outside the module

CIS120

Does this code type check?

module type SET = sig

type 'a set

val empty : 'a set

val add 'a -> 'a set -> 'a set
end

module BSTSet :
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

SET = struct

ena

;3 open BSTSet
let s1 : int set = Empty

1. yes
2. no

Answer: no, the Empty data

constructor is not

available outside the module

CIS120

If a client module works correctly and starts with:

;3 open ULSet

will it continue to work if we change that line to:

;3 open BSTSet

assuming that ULSet and BSTSet both implement SET
and satisfy all of the set properties?

1. yes
2. no

Answer: yes (though performance may be different)

CIS120

module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> 'a set -> 'a set

val member : 'a -> 'a set -> bool
end

module BSTSet : SET = struct

type 'a tree =

| Empty

| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree

let empty : 'a set = Empty

ena

Is is possible for a client to call member with a tree that is
not a BST?

1. yes
2. no

No: the BSTSet operations preserve the BST invariants.
there is no way to construct a non-BST tree using the

15190 interface.

See sets.ml

What Should You Test?

* |Interface: defines operations on the type

. Properties: define how the operations interact

— Elements that were added can be found in the set
— Adding an element a second time doesn’t change the elements of a set
— Adding in a different order doesn’t change the elements of a set

Test the properties!

A property is a general statement about the behavior of the
interface: For any set S and any element X:

member x (add x s) = true

A (good) test case checks a specific instance of the property:
let s1 = add 3 empty
let test () : bool = (member 3 sl)
;5 run_test "ULSet.member 3 s1" test

Property-based Testing

1. Translate informal requirements into general statements about the
interface.

Example: “Order doesn’t matter” becomes

For any set s and any elements x and vy,
add x (add y s) equals add y (add x s)

2. Write tests for the “interesting” instances of the general

statement.
Example. “interesting” choices:
S =empty, S =nonempty,
X =Y X<V
Notes: one or both of X, y already in S

- one can’t (usually) exhaustively test all possibilities (too many!)
so instead, cover the “interesting” possibilities

- be careful with equality! ULSet.equals is not the same as =.

Abstract types: BIG IDEA

Hide the concrete representation of a type behind an
abstract interface to preserve invariants

The interface restricts how other parts of the program can interact with

the data

— Type checking ensures that the only way to create a set is with the operations in

the interface

— If all operations preserve invariants, then all sets in the program must satisfy

invariants

— Example: all BST-implemented sets must satisfy the BST invariant, therefore the

lookup function can assume that its input is a BST

e Benefits

Safety: The other parts of the program can’t violate invariants, which would
cause bugs

Modularity: It is possible to change the implementation without changing the
rest of the program

Summary: Abstract Types

* Different programming languages have different ways of
letting you define abstract types

At a minimum, this means providing:
— A way to specify (write down) an interface
— A means of hiding implementation details (encapsulation)

* In OCaml:
— Interfaces are specified using a signature or interface
— Encapsulation because the interface can omit information

* type definitions
* names and types of auxiliary functions
— Clients cannot mention values or types not named in the interface

