
Programming Languages
and Techniques

(CIS120)

Lecture 10

Abstract types: Sets
Chapter 10

Sets as Abstract Types

Mathematical Sets
Mathematical sets are collections of things:

Empty Set: Ø no things
Nonempty Sets: {0, 1, 2, 3} four integers

{(0,1), (2,3)} two points in the plane
{true, false} two Boolean values

Set operations:
S ⋃ T union
S ⋂ T intersection

Predicates: x ∈ S “x is a member of set S”

CIS120

1

3

0

A set is a Collection
• A set is a collection of elements
– we have operations for creating sets of elements
– we can ask whether elements are in a set

• Sets show up frequently in code
– Examples: set of students in a class, set of coordinates in a

graph, set of answers to a survey, set of data samples from
an experiment, …

• A set is a lot like a list, except:
– Order doesn't matter
– Duplicates don't matter
– It isn't built into OCaml

An element’s presence or absence in the
set is all that matters…

A Set is an Abstraction
• A BST can implement (represent) a

set
– there is a way to represent an empty set

(Empty)
– there is a way to list all elements contained in

the set (inorder)
– there is a way to test membership (lookup)
– Can define union/intersection (with insert

and delete)

• BSTs do not have to represent sets
• BSTs are not the only way to

implement sets

1

0 3

< >

concrete representation

1

3

0

abstract view

Three Example Representations of Sets

1

3

0

abstract view
concrete representation

3 1 0 X X

Alternate representation:
reverse sorted array with
Index of next slot.

1

3

0

abstract view

1

3

0

abstract view
concrete representation

Alternate representation:
unsorted linked list.

3::0::1::[]

1

0 3

< >

concrete representation

BST:

A Set is an Abstract Type
• An abstract type is defined by its interface

and its properties, not its representation
• Interface: defines the type and operations

– There is a type of sets
– There is an empty set
– There is a way to add elements to make a bigger set
– There is a way to list all elements in a set
– There is a way to test membership

• Properties: define how the operations
interact with each other
– Elements that were added can be found in the set
– Adding an element a second time doesn’t change the

listing of elements
– Adding elements in a different order doesn’t change the

listing of elements

• When we use a set, we can forget about
the representation!

1

3

0

abstract view

?
concrete representation

Sets in OCaml

OCaml directly supports the declaration of
abstract types via signatures

module type SET = sig

type 'a set

val empty : 'a set
val add : 'a -> 'a set -> 'a set
val member : 'a -> 'a set -> bool
val equals : 'a set -> 'a set -> bool
val set_of_list : 'a list -> 'a set

end

Set Signature

Type declaration has no
“right-hand side” – its
representation is abstract!

The sig keyword indicates
an interface declaration

The interface members are the (only!)
means of manipulating the abstract type.

The name of the signature

Signature (a.k.a. interface): defines operations on the type

Implementing sets
• There are many ways to implement sets

– lists, trees, arrays, etc.

• How do we choose which implementation?
– Depends on the needs of the application…
– How often is ‘member’ used vs. ‘add’?
– How big can the sets be?

• How do we preserve the invariants of the implementation?
• Many such implementations are of the flavor

“a set is a … with some invariants”
– A set is a list with no repeated elements.
– A set is a tree with no repeated elements
– A set is a binary search tree

Invariant: a property that
remains unchanged when
a specified transformation is
applied.

A module implements an interface
• An implementation of the set interface will look like this:

module BSTSet : SET = struct
…
(* implementations of type and operations *)
…

end

Name of the module

Signature that it implements

The struct keyword indicates
a module implementation

Implement the set Module

module BSTSet : SET = struct

type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree

let empty : 'a set = Empty
…

end

• The implementation must include everything promised by the interface
– It can contain more functions and type definitions (e.g. auxiliary or helper

functions) but those cannot be used outside the module
– The types of the provided implementations must match the signature

Module must define (give a
concrete representation to) the
type declared in the signature

Abstract vs. Concrete BSTSet

1

3

0

abstract view

1

0 3

< >

concrete representation

s =
module BSTSet : SET = struct

type 'a tree = …
type 'a set = 'a tree
let empty : 'a set = Empty
let add (x:'a) (s:'a set) :'a set =

... (* can treat s as a tree *)

end

(* A client of the BSTSet module *)
(* Cannot treat a set as a tree *)
;; open BSTSet

let s : int set
= add 0 (add 3 (add 1 empty))

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

Another Implementation

module ULSet : SET =
struct

type 'a set = 'a list

let empty : 'a set = []
…

end

A different definition for
the type set

Abstract vs. Concrete ULSet

1

3

0

abstract view
concrete representation

s = 0::3::1::[]

module ULSet : SET = struct
type 'a set = 'a list
let empty : 'a set = []
let add (x:'a) (s:'a set) :'a set =

x::s (* can treat s as a list *)

end

(* A client of the ULSet module *)
(* Cannot treat a set as a list *)
;; open ULSet

let s : int set
= add 0 (add 3 (add 1 empty))

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

Client code doesn’t change!

Testing (and using) sets
• Use “open” to bring all names defined in the interface into

scope
• Any names that were already in scope are shadowed

;; open ULSet

let s1 = add 3 empty
let s2 = add 4 empty
let s3 = add 4 s1

let test () : bool = (member 3 s1)
;; run_test "ULSet.member 3 s1" test

let test () : bool = (member 4 s3)
;; run_test "ULSet.member 4 s3" test

Testing (and using) sets
• Alternatively, use the “dot” syntax:

ULSet.<member>
• Note: Module names must be capitalized in OCaml
• Useful when two modules define the same operations

let s1 = ULSet.add 3 ULSet.empty
let s2 = ULSet.add 4 ULSet.empty
let s3 = ULSet.add 4 s1

let test () : bool = (ULSet.member 3 s1)
;; run_test "ULSet.member 3 s1" test

let test () : bool = (ULSet.member 4 s3)
;; run_test "ULSet.member 4 s3" test

CIS120

Does this code type check?

1. yes
2. no

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =

| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

;; open BSTSet
let s1 : int set = add 1 empty

Answer: yes

CIS120

Does this code type check?

1. yes
2. no

;; open BSTSet
let s1 = add 1 empty
let i1 = begin match s1 with

| Node (_,k,_) -> k
| Empty -> failwith “impossible”
end

Answer: no, add constructs a set, not a tree

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =

| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

CIS120

Does this code type check?

1. yes
2. no

;; open BSTSet
let s1 = add 1 empty
let i1 = size s1

Answer: no, cannot access helper functions outside the module

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =

| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
let size (t : 'a tree) : int = …
…

end

CIS120

Does this code type check?

1. yes
2. no

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =

| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

;; open BSTSet
let s1 : int set = Empty

Answer: no, the Empty data
constructor is not
available outside the module

CIS120

If a client module works correctly and starts with:

will it continue to work if we change that line to:

assuming that ULSet and BSTSet both implement SET
and satisfy all of the set properties?

1. yes
2. no

;; open ULSet

;; open BSTSet

Answer: yes (though performance may be different)

CIS120

Is is possible for a client to call member with a tree that is
not a BST?

1. yes
2. no

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set
val member : 'a -> 'a set -> bool

end

module BSTSet : SET = struct
type 'a tree =

| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

No: the BSTSet operations preserve the BST invariants.
there is no way to construct a non-BST tree using the
interface.

Completing ULSet

See sets.ml

What Should You Test?
• Interface: defines operations on the type
• Properties: define how the operations interact

– Elements that were added can be found in the set
– Adding an element a second time doesn’t change the elements of a set
– Adding in a different order doesn’t change the elements of a set

CIS120

Test the properties!
A property is a general statement about the behavior of the
interface: For any set s and any element x:

member x (add x s) = true
A (good) test case checks a specific instance of the property:

let s1 = add 3 empty
let test () : bool = (member 3 s1)
;; run_test "ULSet.member 3 s1" test

Property-based Testing
1. Translate informal requirements into general statements about the

interface.

2. Write tests for the “interesting” instances of the general
statement.

Notes:
- one can’t (usually) exhaustively test all possibilities (too many!)

so instead, cover the “interesting” possibilities
- be careful with equality! ULSet.equals is not the same as =.

CIS120

Example: “Order doesn’t matter” becomes
For any set s and any elements x and y,
add x (add y s) equals add y (add x s)

Example. “interesting” choices:
s = empty, s = nonempty,
x = y, x <> y
one or both of x, y already in s

Abstract types: BIG IDEA

• The interface restricts how other parts of the program can interact with
the data
– Type checking ensures that the only way to create a set is with the operations in

the interface
– If all operations preserve invariants, then all sets in the program must satisfy

invariants
– Example: all BST-implemented sets must satisfy the BST invariant, therefore the

lookup function can assume that its input is a BST

• Benefits
– Safety: The other parts of the program can’t violate invariants, which would

cause bugs
– Modularity: It is possible to change the implementation without changing the

rest of the program

Hide the concrete representation of a type behind an
abstract interface to preserve invariants

Summary: Abstract Types
• Different programming languages have different ways of

letting you define abstract types

• At a minimum, this means providing:
– A way to specify (write down) an interface
– A means of hiding implementation details (encapsulation)

• In OCaml:
– Interfaces are specified using a signature or interface
– Encapsulation because the interface can omit information

• type definitions
• names and types of auxiliary functions

– Clients cannot mention values or types not named in the interface

