
Programming Languages
and Techniques

(CIS120)

Lecture 11

Abstract types: Finite Maps
Chapter 10

Review: Abstract types (e.g. set)
• An abstract type is defined by its interface and

its properties, not its representation.

• Interface: defines operations on the type
– There is an empty set
– There is a way to add elements to a set to make a bigger set
– There is a way to list all elements in a set
– There is a way to test membership

• Properties: define how the operations interact
with each other
– Elements that were added can be found in the set
– Adding an element a second time doesn’t change the elements

of a set
– Adding in a different order doesn’t change the elements of a set

• Any type (possibly with invariants) that satisfies
the interface and properties can be a set.

• Clients of an implementation can only access
what is explicitly in the abstract type’s interface

1

3

0

abstract view

?
concrete representation

Another Implementation

module ULSet : SET =
struct

type 'a set = 'a list

let empty : 'a set = []
…

end

A different definition for
the type set

Abstract vs. Concrete ULSet

1

3

0

abstract view
concrete representation

s = 0::3::1::[]

module ULSet : SET = struct
type 'a set = 'a list
let empty : 'a set = []
let add (x:'a) (s:'a set) :'a set =

x::s (* can treat s as a list *)

end

(* A client of the ULSet module *)
;; open ULSet

let s : int set
= add 0 (add 3 (add 1 empty))

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

Client code doesn’t change!

Testing (and using) sets
• To use the values defined in the set module, use the “dot”

syntax:
ULSet.<member>

• Note: Module names must be capitalized in OCaml

let s1 = ULSet.add 3 ULSet.empty
let s2 = ULSet.add 4 ULSet.empty
let s3 = ULSet.add 4 s1

let test () : bool = (ULSet.member 3 s1)
;; run_test "ULSet.member 3 s1" test

let test () : bool = (ULSet.member 4 s3)
;; run_test "ULSet.member 4 s3" test

Testing (and using) sets
• Alternatively, use “open” to bring all of the names defined in

the interface into scope. (Saves on repeating “ULSet.”)

;; open ULSet

let s1 = add 3 empty
let s2 = add 4 empty
let s3 = add 4 s1

let test () : bool = (member 3 s1)
;; run_test "ULSet.member 3 s1" test

let test () : bool = (member 4 s3)
;; run_test "ULSet.member 4 s3" test

CIS120

Does this code type check?

1. yes
2. no

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =

| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

;; open BSTSet
let s1 : int set = add 1 empty

Answer: yes

CIS120

Does this code type check?

1. yes
2. no

;; open BSTSet
let s1 = add 1 empty
let i1 = begin match s1 with

| Node (_,k,_) -> k
| Empty -> failwith “impossible”
end

Answer: no, add constructs a set, not a tree

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =

| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

CIS120

Does this code type check?

1. yes
2. no

;; open BSTSet
let s1 = add 1 empty
let i1 = size s1

Answer: no, cannot access helper functions outside the module

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =

| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
let size (t : 'a tree) : int = …
…

end

CIS120

Does this code type check?

1. yes
2. no

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =

| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

;; open BSTSet
let s1 : int set = Empty

Answer: no, the Empty data
constructor is not
available outside the module

CIS120

If a client module works correctly and starts with:

will it continue to work if we change that line to:

assuming that ULSet and BSTSet both implement SET
and satisfy all of the set properties?

1. yes
2. no

;; open ULSet

;; open BSTSet

Answer: yes (though performance may be different)

CIS120

Is is possible for a client to call member with a tree that is
not a BST?

1. yes
2. no

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set
val member : 'a -> 'a set -> bool

end

module BSTSet : SET = struct
type 'a tree =

| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

No: the BSTSet operations preserve the BST invariants.
there is no way to construct a non-BST tree using the
interface.

Finite Maps

Another example of abstract interfaces & concrete
implementations

Motivating Scenario
• Suppose you were writing some course-management

software and needed to look up the lab section for a
student given the student’s PennKey?
– Students might add/drop the course
– Students might switch lab sections
– Students should be in only one lab section

• How would you do it? What data structure would
you use?

CIS120 24

Example: Key/value store

• Each key is associated with a value.
– No two keys are identical
– Values can be repeated

• Given the key “stephanie" we want to find / lookup the value 15

CIS120

Key Value
“stephanie” 15

“mitch” 05
“ezaan” 10
“likat” 15

… …

Finite Maps
• A finite map (a.k.a. dictionary) is a collection of bindings from

distinct keys to values.
– Operations to add & remove bindings, test for key

membership, look up the value bound to a particular key

• Example: we might want to use a data structure to look up the
lab section of a CIS 120 student

• Like sets, finite maps appear in many settings:
– domain names to IP addresses
– words to their definitions (a dictionary)
– user names to passwords
– …

CIS120 26

Signature: Finite Map

module type MAP = sig

type ('k,'v) map

val empty : ('k,'v) map
val add : 'k -> 'v -> ('k,'v) map -> ('k,'v) map
val mem : 'k -> ('k,'v) map -> bool
val get : 'k -> ('k,'v) map -> 'v
val entries : ('k,'v) map -> ('k * 'v) list
val equals : ('k,'v) map -> ('k,'v) map -> bool

end

The map type is generic in TWO ways:
type of keys and type of values

Finite Map Demo

Using module signatures to preserve
data structure invariants

finiteMap.ml

Properties of Finite Maps
For any finite map m, key k, and value v:
1. get k (add k v m) = v
2. If k1 <> k2 then

get k1 (add k2 v2 (add k1 v1 m)) = v1
3. if mem k m = true then

there is a v such that get k m = v
4. If mem k m = false then

get k m = v fails
5. mem k (add k v m) = true
And others…

CIS120

Tests for Finite Map abstract type
;; open Assert

(* Specifying the properties of the MAP abstract type via test cases. *)

(* A simple map with one element. *)
let m1 : (int,string) map = add 1 "uno" empty

(* list entries for this simple map *)
;; run_test "entries m1" (fun () -> entries m1 = [(1,"uno")])

(* access value for key in the map *)
;; run_test "find 1 m1" (fun () -> (get 1 m1) = "uno")

(* find for value that does not exist in the map? *)
;; run_failing_test "find 2 m1" (fun () -> (get 2 m1) = "dos")

let m2 : (int, string) map = add 1 "un" m1

(* find after redefining value, should be new value *)
;; run_test "find 1 m2" (fun () -> (get 1 m2) = "un")

(* entries after redefining value, should only show new value *)
;; run_test "entries m2" (fun () -> entries m2 = [(1, "un")])

(* test membership *)

CIS120

Implementation: Ordered Lists
module Assoc : MAP = struct

(* Represent a finite map as a list of pairs. *)
(* Representation invariant: *)
(* - no duplicate keys (helps get, remove) *)
(* - keys are sorted (helps equals, helps get) *)

type ('k,'v) map = ('k * 'v) list

let empty : ('k,'v) map = []

let rec mem (key:'k) (m : ('k,'v) map) : bool =
begin match m with
| [] -> false
| (k,v)::rest ->

(key >= k) &&
((key = k) || (mem key rest))

end

;; run_test "mem test" (fun () -> mem "b" [("a",3); ("b",4)])

CIS120

Implementation: Ordered Lists
let rec get (key:'k) (m : ('k,'v) map) : 'v =

begin match m with
| [] -> failwith "key not found"
| (k,v)::rest ->

if key < k then failwith "key not found"
else if key = k then v
else get key rest

end

let rec remove (key:'k) (m : ('k,'v) map) : ('k,'v) map =
begin match m with
| [] -> []
| (k,v)::rest ->

if key < k then m
else if key = k then rest
else (k,v)::remove key rest

end

CIS120

Completing module implementation

finiteMap.ml

Abstract types: BIG IDEA

• The interface restricts how other parts of the program can interact with
the data
– Type checking ensures that the only way to create a set is with the operations in

the interface
– If all operations preserve invariants, then all sets in the program must satisfy

invariants
– Example: all BST-implemented sets must satisfy the BST invariant, therefore the

lookup function can assume that its input is a BST

• Benefits
– Safety: The other parts of the program can’t violate invariants, which would

cause bugs
– Modularity: It is possible to change the implementation without changing the

rest of the program

Hide the concrete representation of a type behind an
abstract interface to preserve invariants

Summary: Abstract Types
• Different programming languages have different ways of

letting you define abstract types

• At a minimum, this means providing:
– A way to specify (write down) an interface
– A means of hiding implementation details (encapsulation)

• In OCaml:
– Interfaces are specified using a signature or interface
– Encapsulation because the interface can omit information

• type definitions
• names and types of auxiliary functions

– Clients cannot mention values or types not named in the interface

