Programming Languages
and Techniques
(C1S120)

Lecture 11

Abstract types: Finite Maps
Chapter 10




Review: Abstract types (e.g. set)

An abstract type is defined by its interface and
its properties, not its representation.

Interface: defines operations on the type

There is an empty set

There is a way to add elements to a set to make a bigger set
There is a way to list all elements in a set

There is a way to test membership

Properties: define how the operations interact
with each other

Elements that were added can be found in the set

Adding an element a second time doesn’t change the elements
of a set

Adding in a different order doesn’t change the elements of a set

Any type (possibly with invariants) that satisfies
the interface and properties can be a set.

Clients of an implementation can only access
what is explicitly in the abstract type’s interface

concrete represe ntation

abstract view

®
©
®



Another Implementation

module ULSet : SET =
struct

A different definition for
type 'a set = 'a list <« the type set

let empty : 'a set = []

end




Abstract vs. Concrete ULSet

S

0::3::1::[]

concrete represe ntation

abstract view

®
©
®

module ULSet : SET = struct
type 'a set = 'a list
let empty : 'a set = []
let add (x:'a) (s:'a set) :'a set =
X::S (* can treat s as a list *)

end
_____________ -
rFnodule type SET = sig I
type 'a set
—==) val empty : 'a set f——-
val add : 'a -> 'a set -> 'a set I
| end

(* A client of the ULSet module *)
;3 open ULSet

let s : 1nt set
= add @ (add 3 (add 1 empty))

\

Client code doesn’t change!




Testing (and using) sets

 To use the values defined in the set module, use the “dot”
syntax:
ULSet .<member>

* Note: Module names must be capitalized in OCaml

let s1 = ULSet.add 3 ULSet.empty
let s2 = ULSet.add 4 ULSet.empty
let s3 = ULSet.add 4 sl

let test (O : bool = (ULSet.member 3 sl1)
;3 run_test "ULSet.member 3 s1" test

let test () : bool = (ULSet.member 4 s3)
;3 run_test "ULSet.member 4 s3" test




Testing (and using) sets

* Alternatively, use “Open” to bring all of the names defined in
the interface into scope. (Saves on repeating “ULSet.”)

;5 open ULSet

let sl = add 3 empty
let s2 = add 4 empty
let s3 = add 4 sl

let test (O : bool = (member 3 sl)
;3 run_test "ULSet.member 3 s1" test

let test () : bool = (member 4 s3)
;3 run_test "ULSet.member 4 s3" test




Does this code type check?

module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> "a set -> 'a set
end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

ena

;3 open BSTSet

let s1 : int set = add 1 empty

1. yes
2. no

Answer: yes

CIS120




Does this code type check?

1. yes
2. no

;3 open BSTSet
let s1 = add 1 empty

let 11 = begin match sl with
| Node (_,k,_) -> k
| Empty -> failwith “impossible”

end

module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

ena

CIS120

Answer: no, add constructs a set, not a tree




Does this code type check?

module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty
let size (t : 'a tree) : int = ..

ena

;3 open BSTSet
let s1 = add 1 empty
let 11 = size sl

1. yes
2. no

Answer: no, cannot access helper functions outside the module

CIS120




Does this code type check?

module type SET = sig

type 'a set

val empty : 'a set

val add 'a -> 'a set -> 'a set
end

module BSTSet :
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

SET = struct

ena

;3 open BSTSet
let s1 : int set = Empty

1. yes
2. no

Answer: no, the Empty data

constructor is not

available outside the module

CIS120




If a client module works correctly and starts with:

;3 open ULSet

will it continue to work if we change that line to:

;3 open BSTSet

assuming that ULSet and BSTSet both implement SET
and satisfy all of the set properties?

1. yes
2. no

Answer: yes (though performance may be different)

CIS120



module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> 'a set -> 'a set

val member : 'a -> 'a set -> bool
end

module BSTSet : SET = struct

type 'a tree =

| Empty

| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree

let empty : 'a set = Empty

ena

Is is possible for a client to call member with a tree that is
not a BST?

1. yes
2. no

No: the BSTSet operations preserve the BST invariants.
there is no way to construct a non-BST tree using the

15190 interface.



Finite Maps

Another example of abstract interfaces & concrete
implementations




Motivating Scenario

e Suppose you were writing some course-management
software and needed to look up the lab section for a
student given the student’s PennKey?

— Students might add/drop the course
— Students might switch lab sections
— Students should be in only one lab section

* How would you do it? What data structure would
you use?




Example: Key/value store

“stephanie” 15
“mitch” 05
“ezaan” 10

“likat” 15

* Each key is associated with a value.
— No two keys are identical
— Values can be repeated

* Given the key “stephanie"” we want to find / lookup the value 15

CIS120



Finite Maps

* Afinite map (a.k.a. dictionary) is a collection of bindings from
distinct keys to values.

— Operations to add & remove bindings, test for key
membership, look up the value bound to a particular key

 Example: we might want to use a data structure to look up the
lab section of a CIS 120 student

e Like sets, finite maps appear in many settings:
— domain names to |IP addresses
— words to their definitions (a dictionary)
— user names to passwords

CIS120 26




Signature: Finite Map

module type MAP = sig The map type is generic in TWO ways:

type of keys and type of values

type (C'k, "v) map

val empty . ('k,"'v) map

val add 'k > v > ('k,"v) map -> ('k,'v) map
val mem 'k > ('k,"v) map -> bool

val get 'k > ('k,"v) map -> 'v

val entries : ('k,'v) map -> ('k * 'v) list

val equals : ('k,'v) map -> ('k,"'v) map -> bool

end




Using module signatures to preserve
data structure invariants

finiteMap.ml



Properties of Finite Maps

For any finite map m, key k, and value v:
1. get k (add k vm) =v

2. Ifkl <> k2then
get k1 (add k2 vZ2 (add k1 vl m)) = vl

3. if mem k m = true then
thereisavsuchthat get k m = v

4. If mem k m false then
get km = v fails

5. mem k (add k v m) = true
And others...




Tests for Finite Map abstract type

55 open Assert
(* Specifying the properties of the MAP abstract type via test cases. *)

(* A simple map with one element. *)
let m1 : (int,string) map = add 1 "uno" empty

(* list entries for this simple map *)
;3 run_test "entries ml" (fun () -> entries ml = [(1,"uno")])

(* access value for key in the map *)
;; run_test "find 1 m1" (fun () -> (get 1 m1) = "uno"

(* find for value that does not exist in the map? *)
;3 run_failing test "find 2 ml1" (fun () -> (get 2 ml) = "dos" )

let m2 : (int, string) map = add 1 "un" ml

(* find after redefining value, should be new value *)
;3 run_test "find 1 m2" (fun () -> (get 1 m2) = "un"

(* entries after redefining value, should only show new value *)
gis12pun_test "entries m2" (fun () -> entries m2 = [(1, "un")])




Implementation: Ordered Lists

module Assoc : MAP = struct

(* Represent a finite map as a list of pairs. *)

(* Representation invariant: *I
(* - no duplicate keys Chelps get, remove) *)
(* - keys are sorted Chelps equals, helps get) *)

type ('k,'v) map = ('k * 'v) list
let empty : ('k,'v) map = []

let rec mem (Ckey:'k) (m : ('k,"'v) map) : bool =
begin match m with

| [] -> false
| (k,v)::rest ->
(key >= k) &&

((key = k) Il (mem key rest))
end

;5 run_test "mem test" (fun O -> mem "b" [("a",3); ("b",4)])

CIS120




Implementation: Ordered Lists

let rec get (key:'k) (m : ('k,'v) map) : 'v =

begin match m with

| [1 -> failwith "key not found"

| (k,v)::rest ->
if key < k then failwith "key not found"
else if key = k then v
else get key rest

end

let rec remove (key:'k) (m : C('k,'v) map) : ('k,'v) map =
begin match m with
I [1 -> []
| (k,v)::rest ->
if key < k then m
else if key = k then rest
else (k,v)::remove key rest

end

CIS120




Completing module implementation

finiteMap.ml




Abstract types: BIG IDEA

Hide the concrete representation of a type behind an
abstract interface to preserve invariants

The interface restricts how other parts of the program can interact with

the data

— Type checking ensures that the only way to create a set is with the operations in

the interface

— If all operations preserve invariants, then all sets in the program must satisfy

invariants

— Example: all BST-implemented sets must satisfy the BST invariant, therefore the

lookup function can assume that its input is a BST

e Benefits

Safety: The other parts of the program can’t violate invariants, which would
cause bugs

Modularity: It is possible to change the implementation without changing the
rest of the program




Summary: Abstract Types

* Different programming languages have different ways of
letting you define abstract types

At a minimum, this means providing:
— A way to specify (write down) an interface
— A means of hiding implementation details (encapsulation)

* In OCaml:
— Interfaces are specified using a signature or interface
— Encapsulation because the interface can omit information

* type definitions
* names and types of auxiliary functions
— Clients cannot mention values or types not named in the interface



