
Programming Languages

and Techniques

(CIS120)

Lecture 13 – Part 2

Mutable State, Aliasing, and
the Abstract Stack Machine

Chapters 14 & 15

Mutable State

Mutable Record Fields

• By default, all record fields are immutable—once initialized,
they can never be modified.

• OCaml supports mutable fields that can be imperatively
updated by the “set” command: record.field <- val

CIS120

type point = {mutable x:int; mutable y:int}

let p0 = {x=0; y=0}
(* set the x coord of p0 to 17 *)
;; p0.x <- 17
;; print_endline ("p0.x = " ^ (string_of_int p0.x))

p0.x = 17

note the ‘mutable’ keyword

in-place update of p0.x

Record Update

• Functions can assign to mutable record fields
• Note that the return type of ‘<-’ is unit

– i.e., it is a command

• Note that the result type of shift is also unit
– i.e., shift is a user-defined command

CIS120

type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)
let shift (p:point) (dx:int) (dy:int) : unit =

p.x <- p.x + dx;
p.y <- p.y + dy

Why Use Mutable State?

• Action at a distance
– allow remote parts of a program to

communicate / share information without
threading the information through all the points
in between

• Data structures with explicit sharing
– e.g. graphs
– without mutation, it is only possible to build

trees – no cycles
• Efficiency/Performance

– A few data structures have imperative
implementations with better asymptotic
efficiency than the best declarative version

• Re-using space (in-place update)
• Random-access data (arrays)
• Direct manipulation of hardware

– device drivers, displays, etc.

CIS120

Different views of imperative programming

Java (and C, C++, C#)

• Code is a sequence of
statements (a.k.a.
commands) that do
something, sometimes
using expressions to
compute values.

• References are mutable by
default, must be explicitly
declared to be constant

OCaml (and Haskell, etc.)

• Code is an expression that
has a value. Sometimes
computing that value has
other effects.

• References are immutable
by default, must be
explicitly declared to be
mutable

CIS120

CIS120

What answer does the following function produce when called?

1. 17
2. something else
3. sometimes 17 and sometimes something else
4. f is ill typed

type point = {mutable x:int; mutable y:int}

let f (p1:point) : int =
p1.x <- 17;
p1.x

ANSWER: 1

CIS120

What answer does the following function produce when called?

1. 17
2. something else
3. sometimes 17 and sometimes something else
4. f is ill typed

type point = {mutable x:int; mutable y:int}

let f (p1:point) (p2:point) : int =
p1.x <- 17;
p2.x <- 42;
p1.x

ANSWER: 3

The Challenge of Mutable State: Aliasing
What does this function return?

CIS120

let f (p1:point) (p2:point) : int =
p1.x <- 17;
p2.x <- 42;
p1.x

(* Consider this call to f: *)
let p0 = {x=0; y=0} in

f p0 p0

Two identifiers are said to be aliases if they both name the same mutable
record. Inside f, the identifiers p1 and p2 might or might not be aliased,
depending on which arguments are passed in.

SEE THE COURSE NOTES FOR MORE ON THIS EXAMPLE

Opening a Whole New Can of Worms*

CIS120

*t-shirt courtesy of
ahrefs.com

The Challenge of Mutable State: Aliasing
What does this function return?

CIS120

let f (p1:point) (p2:point) : int =
p1.x <- 17;
p2.x <- 42;
p1.x

(* Consider this call to f: *)
let p0 = {x=0; y=0} in

f p0 p0

Two identifiers are said to be aliases if they both name the same mutable
record. Inside f, the identifiers p1 and p2 might or might not be aliased,
depending on which arguments are passed in.

SEE THE COURSE NOTES (ch 14) FOR MORE ON THIS EXAMPLE

The Abstract State Machine

Location, Location, Location!

CIS120

We need a new Computation Model

• The simple substitution model works well for
value-oriented programming
– "Observable" behavior of a value is completely determined

by its structure
– Pure functions are referentially transparent: two different

calls to the same function with the same arguments yield the
same results

– These properties justify "replace
equals by equals" reasoning

• With mutable state…
– The location of values matters, not just their structure
– Results returned by functions are not fully determined by

their arguments (can also depend on “hidden” mutable
state)

CIS120

Abstract Stack Machine

Three “spaces”
• workspace

– the expression the computer is
currently simplifying

• stack
– temporary storage for local

variables and saved work
• heap

– storage area for large data
structures

CIS120

HeapStackWorkspace

Abstract stack machine

Abstract Stack Machine

Initial state:
• workspace contains whole program
• stack and heap are empty

Machine operation:
• In each step, choose “next part” of

the workspace expression and
simplify it

• (Sometimes this will change the
stack and/or heap)

• Stop when there are no more
simplifications to be done

CIS120

HeapStackWorkspace

Abstract stack machine

HeapStack

Nil

Values and References

A value is either:

• a primitive value like an integer, or,

• a reference to a location in the heap

A reference value is the address (location) of data in the heap.
We draw a reference value as an “arrow”
– The arrow “points” to a box or cell located at this address
– Where we are storing this value also matters:

CIS120

Cons 3This box contains a
reference value

(the arrow itself) The reference points to
this heap location

containing a Cons cell

This reference value
points to the heap

location of a Nil cell

References as an Abstraction

• In a real computer, the memory consists of an array of 32-bit
words, numbered 0 … 232-1 (for a 32-bit machine)
– A reference is just an address that tells you where to look up a value
– Data structures are usually laid out in contiguous blocks of memory
– Constructor tags are just numbers chosen by the compiler

e.g. Nil = 42 and Cons = 120120120

CIS120

Addresses 32-bit Values
0 ...
1 ...
2 4294967291
3 ...

... ...
4294967290 ...
4294967291 120120120
4294967292 3
4294967293 4294967295
4294967294 ...
4294967295 42

The “real”
heap.

Nil

`
Cons 3

How we
picture it.

The ASM:

Simplifying variables, operators,

let expressions, and if expressions

CIS120

Simplification

let x = 10 + 12 in
let y = 2 + x in

if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

Simplification

let x = 10 + 12 in
let y = 2 + x in

if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

Simplification

let x = 22 in
let y = 2 + x in

if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

Simplification

let x = 22 in
let y = 2 + x in

if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

Simplification

let y = 2 + x in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

Simplification

let y = 2 + x in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

x is not a value: so look it up in the stack

Simplification

let y = 2 + 22 in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

Simplification

let y = 2 + 22 in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

Simplification

let y = 24 in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

Simplification

let y = 24 in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

Simplification

if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

y 24

Simplification

if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

y 24

Looking up x in the stack proceeds from most recent
entries to the least recent entries. Note that the
“top” (most recent part) of the stack is drawn toward
the bottom of the diagram.

Simplification

if 22 > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

y 24

Simplification

if 22 > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

y 24

Simplification

if false then 3 else 4

Workspace Stack Heap

CIS120

x 22

y 24

Simplification

if false then 3 else 4

Workspace Stack Heap

CIS120

x 22

y 24

Simplification

4

Workspace Stack Heap

CIS120

x 22

y 24

DONE!

CIS120

What does the Stack look like after simplifying the
following code on the workspace?

let z = 20 in
let w = 2 + z in

w

z 22

w 2 + z

Stack

z 20

w 22

Stack

w 22

Stack

w 22

z 20

Stack

1. 2. 3. 4.

ANSWER: 2

CIS120

What does the Stack look like after simplifying the
following code on the workspace?

let z = 20 in
let z = 2 + z in

z

z 22

z 20

Stack

z 20

z 22

Stack

z 22

Stack

z 22

z 22

Stack

1. 2. 3. 4.

ANSWER: 2

• The reason for introducing the ASM model is to make heap
locations and sharing explicit.
– Now we can say what it means to mutate a heap value in place.

• We draw a record in the heap like this:
– The doubled outlines indicate that those

cells are mutable
– Everything else is immutable

Mutable Records

CIS120

type point = {mutable x:int; mutable y:int}

let p1 : point = {x=1; y=1;}
let p2 : point = p1
let ans : int = (p2.x <- 17; p1.x)

x 1

y 1

A point record
in the heap.

Allocate a Record

let p1 : point = {x=1; y=1;}
let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

Allocate a Record

let p1 : point =
let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

x 1

y 1

Let Expression

let p1 : point = .
let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

x 1

y 1

Push p1

let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1 x 1

y 1

Look Up ‘p1’

let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1 x 1

y 1

Look Up ‘p1’

let p2 : point =
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1 x 1

y 1

Let Expression

let p2 : point = .
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1 x 1

y 1

Push p2

let ans : int =
p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1

p2

x 1

y 1

Note: p1 and p2 are references to the same heap record.
They are aliases – two different names for the same thing.

Look Up ‘p2’

let ans : int =
p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1

p2

x 1

y 1

Look Up ‘p2’

let ans : int =
.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1

p2

x 1

y 1

Assign to x field

let ans : int =
.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1

p2

x 1

y 1

Assign to x field

let ans : int =
(); p1.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

This is the step in which the ‘imperative’ update occurs.
The mutable field x has been modified in place to
contain the value 17.

Sequence ‘;’ Discards Unit

let ans : int =
(); p1.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Look Up ‘p1’

let ans : int =
p1.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Look Up ‘p1’

let ans : int =
.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Project the ‘x’ field

let ans : int =
.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Project the ‘x’ field

let ans : int =
17

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Let Expression

let ans : int =
17

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Push ans

Workspace Stack Heap

CIS120

p1

p2

ans 17

DONE!

x 17

y 1

CIS120

What answer does the following function produce when called?

1. 17
2. 42
3. sometimes 17 and sometimes 42
4.f is ill typed

let f (p1:point) (p2:point) : int =
p1.x <- 17;
let z = p1.x in
p2.x <- 42;
z

Answer: 1

CIS120

What do the Stack and Heap look like after simplifying the following code on the
workspace?

let p1 = {x=0; y=0} in
let p2 = p1 in
p1.x <- 17;
let z = p1.x in
p2.x <- 42;
p1.x

p1

Stack

1.

Heap

p2

z 17

x 42

y 0

p1

Stack Heap

p2

z 17

x 17

y 0

x 42

y 0

2.

Answer: 1

