
Programming Languages
and Techniques

(CIS120)

Lecture 13

Partiality: Options
Unit, Sequencing and Commands

Records
Chapters 11, 12, and 13

Dealing with Partiality*

*A function is said to be partial if it is not defined for all inputs.

Which of these is a function that calculates the
maximum value in a (generic) list:

1.

2.

3.

4. None of the above

let rec list_max (l:'a list) : ’a =
begin match l with
| [] -> []
| h :: t -> max h (list_max t)
end

let rec list_max (l:'a list) : ’a =
fold max 0 l

let rec list_max (l:’a list) : ‘a =
begin match l with
| h :: t -> max h (list_max t)
end

Answer: 4

Quiz answer
• list_max isn’t defined for the empty list!

CIS120

let rec list_max (l:'a list) : ’a =
begin match l with

| [] -> failwith “empty list”
| [h] -> h
| h::t -> max h (list_max t)

end

Client of list_max

• Oops! string_of_max will fail if given []

• Not so easy to debug if string_of_max is written by one
person and list_max is written by another.

• Interface of list_max is not very informative
val list_max : int list -> int

CIS120

(* string_of_max calls list_max *)
let string_of_max (x:int list) : string =
string_of_int (list_max x)

Solutions to Partiality: Option 1
• Abort the program:

failwith “an error message”
– Whenever it is called, failwith halts the program and reports

the error message it is given.

• This solution is appropriate whenever you know that a
certain case is impossible
– The compiler isn’t smart enough to figure out that the case is

impossible…
– Often happens when there is an invariant on a data structure
– failwith is also useful to “stub out” unimplemented parts of

your program.
• Languages (e.g. OCaml, Java) support exception handling

facilities to let programs recover from such failures.
– We'll talk about these when we get to Java

• Return a default or error value
– e.g. define list_max [] to be -1
– Error codes used often in C programs
– null used often in Java

• But…
– What if -1 (or whatever default you choose) really is the maximum value?
– Can lead to many bugs if the default isn’t handled properly by the callers.

– IMPOSSIBLE to implement generically!
• No way to generically create a sensible default value for every possible type

– Sir Tony Hoare, Turing Award winner and inventor of null calls it his
“billion dollar mistake”!

• Defaults should be avoided if possible

Solutions to Partiality: Option 2

Optional values

Solutions to Partiality: Option 3

Option Types
• Define a generic datatype of optional values:

• A “partial” function returns an option

• Contrast this with “null”, a “legal” return value of any type
– caller can accidentally forget to check whether null was used; results in

NullPointerExceptions or crashes
• Modern language designs (e.g. Apple's Swift, Mozilla's Rust)

distinguish between the type String (definitely not null) and String?
(optional string)

CIS120

type 'a option =
| None
| Some of 'a

let list_max (l:list) : int option = …

Example: list_max

• A function that returns the maximum value of a list as an
option (None if the list is empty)

CIS120

let list_max (l:'a list) : 'a option =
begin match l with

| [] -> None
| x::tl -> Some (fold max x tl)

end

Revised client of list_max

• string_of_max will never fail

• The type of list_max makes it explicit that a client must check
for partiality.
val list_max : int list -> int option

CIS120

(* string_of_max calls list_max *)
let string_of_max (l:int list) : string =

begin match (list_max l) with
| None -> “no maximum”
| Some m -> string_of_int m
end

What is the type of this function?

1. ‘a list -> ‘a

2. ‘a list -> ‘a list

3. ‘a list -> ‘b option

4. ‘a list -> ‘a option

5. None of the above

let head (x: ______) : ______ =
begin match x with
| [] -> None
| h :: t -> Some h
end

Answer: 4

What is the value of this expression?

1. [1 ; 0]

2. 1

3. [Some 1; None]

4. [None; None]

5. None of the above

let head (x: ‘a list) : ‘a option =
begin match x with
| [] -> None
| h :: t -> Some h
end in

[head [1]; head []]

Answer: 3

Revising the MAP interface

CIS120

module type MAP = sig

type ('k,'v) map

val empty : ('k,'v) map
val add : 'k -> 'v -> ('k,'v) map -> ('k,'v) map
val remove : 'k -> ('k,'v) map -> ('k,'v) map
val mem : 'k -> ('k,'v) map -> bool
val get : 'k -> ('k,'v) map -> 'v option
val entries : ('k,'v) map -> ('k * 'v) list
val equals : ('k,'v) map -> ('k,'v) map -> bool

end

get returns an optional 'v.
Now its type isn't a lie!

Commands, Sequencing and Unit

What is the type of print_string?

Sequencing Commands and Expressions
We can sequence commands inside expressions using ‘;’

Unlike in C, Java, etc., ‘;’ doesn’t terminate a statement---it
separates a command from an expression.

The distinction between commands & expressions is artificial.
• print_string is a function of type: string -> unit
• Commands are just expressions of type: unit

CIS120

let f (x:int) : int =
print_string "f called with ";
print_string (string_of_int x);
x + x

note the use of ‘;’ heredo not use ‘;’ here!

Sequencing Commands and Expressions
• Expressions of type unit are useful because of their

side effects – they "do" stuff
– e.g. printing, changing the value of mutable state

• We can think of ‘;’ as an infix function of type:
unit -> ‘a -> ‘a

CIS120

let f (x:int) : int =
print_string "f called with ";
print_string (string_of_int x);
x + x

note the use of ‘;’ heredo not use ‘;’ here!

unit: the trivial type
• Similar to "void" in Java or C
• For functions that don't take any arguments

• And for functions that don't return anything, such as testing
and printing functions a.k.a commands:

CIS120

let f () : int = 3
let y : int = f ()

val f : unit -> int
val y : int

(* run_test : string -> (unit -> bool) -> unit *)
;; run_test “TestName” test

(* print_string : string -> unit *)
;; print_string “Hello, world!”

unit: the boring type
• Actually, () is a value just like any other value (a 0-ary tuple)
• For functions that don't take any interesting arguments

• Also for functions that don't return anything interesting, such
as testing and printing functions a.k.a commands:

CIS120

let f () : int = 3
let y : int = f ()

val f : unit -> int
val y : int

(* run_test : string -> (unit -> bool) -> unit *)
;; run_test “TestName” test

(* print_string : string -> unit *)
;; print_string “Hello, world!”

unit: the first-class type
• Can define values of type unit

CIS120

let x : unit = () val x : unit

let z = begin match x with
| () -> 4

end

fun () -> 3

• Can pattern match unit (even in function definitions)

;; if z <> 4 then
failwith "oops"

else ()

;; if z <> 4 then
failwith "oops"

• Is the result of an implicit else branch:

CIS120

What is the type of f in the following program:

1. unit -> int
2. unit -> unit
3. int -> unit
4. int -> int
5. f is ill typed

let f (x:int) =
print_int (x + x)

Answer: 3

CIS120

What is the type of f in the following program:

1. unit -> int
2. unit -> unit
3. int -> unit
4. int -> int
5. f is ill typed

let f (x:int) =
(print_int x);
(x + x)

Answer: 4

Records

Immutable Records
• Records are like tuples with named fields:

• The type rgb is a record with three fields: r, g, and b
– fields can have any types; they don’t all have to be the same

• Record values are created using this notation:
{field1=val1; field2=val2;…}

CIS120

(* a type for representing colors *)
type rgb = {r:int; g:int; b:int;}

(* some example rgb values *)
let red : rgb = {r=255; g=0; b=0;}
let blue : rgb = {r=0; g=0; b=255;}
let green : rgb = {r=0; g=255; b=0;}
let black : rgb = {r=0; g=0; b=0;}
let white : rgb = {r=255; g=255; b=255;}

Curly braces
around record.
Semicolons after
record components.

Field Projection
• The value in a record field can be obtained by using “dot”

notation: record.field

CIS120

(* a type for representing colors *)
type rgb = {r:int; g:int; b:int;}

(* using 'dot' notation to project out components *)
(* calculate the average of two colors *)
let average_rgb (c1:rgb) (c2:rgb) : rgb =

{r = (c1.r + c2.r) / 2;
g = (c1.g + c2.g) / 2;
b = (c1.b + c2.b) / 2;}

Why Pure Functional Programming?
• Simplicity

– small language: arithmetic, local variables,
recursive functions, datatypes, pattern matching,
generic types/functions and modules

– simple substitution model of computation

• Persistent data structures
– Nothing changes; retains all intermediate results
– Good for version control, fault tolerance, etc.

• Typechecker can give more helpful errors
– Once your program compiles, it needs less testing
– Options vs. NullPointerException

• Easier to parallelize and distribute
– No implicit interactions between parts of the

program.
– All of the behavior of a function is specified by its

arguments

CIS120

