
Programming Languages
and Techniques

(CIS120)

Lecture 19

GUI library: Simple Widgets
Chapter 18

Building a GUI library & application

Gctx.ml

Review: Widget Layout
• Widgets are “things drawn on the screen”. How to make them

location independent?
• Idea: Use a graphics context to make drawing relative to the

widget’s current position

Paint.ml

Native
graphics
library

HW GUI
Library

Application

Widget.ml

OCaml’s Graphics Module (graphics.cma)

Eventloop.ml
The graphics
context
isolates the
widgets from
the Graphics
module.

5

Gctx.ml

Simplified Version
• Today: look at simplified version of widget and eventloop

libraries.
• Simple applications (hello, fractalTree, swdemo)
• Project available via Codio (GUI Demo)

hello.ml

Native
graphics
library

Simple GUI
Library

Application

SimpleWidget.ml

OCaml’s Graphics Module (graphics.cma)

SimpleEventloop.ml

6

Review: Simple Widgets

• You can ask a simple widget to repaint itself
• You can ask a simple widget to tell you its size

• Repainting is relative to a graphics context

(* An interface for simple GUI widgets *)
type widget = {

repaint : Gctx.gctx -> unit;
size : unit -> (int * int)

}
val label : string -> widget
val space : int * int -> widget
val border : widget -> widget
val hpair : widget -> widget -> widget
val canvas : int * int -> (Gctx.gctx -> unit) -> widget

simpleWidget.mli

Review: A “Hello World” application
(* Create some simple label widgets *)
let l1 = label "Hello"
let l2 = label "World"
(* Compose them horizontally, adding some borders *)
let h = border

(hpair (border l1)
(hpair (space (10,10)) (border l2)))

Hello World

On the screen

border

hpair

border

label

hpair

space border

labelWidget tree

swdemo.ml

The canvas Widget
• Region of the screen that can be drawn upon
• Has a fixed width and height
• Parameterized by a repaint method

– …which will directly use the Gctx drawing routines to draw on the
canvas

let canvas ((w,h):int*int) (r: Gctx.gctx -> unit) : widget =
{

repaint = r;
size = (fun () -> (w,h))

}
simpleWidget.ml

Nested Widgets

Containers and Composition

The hpair Widget Container

• let h = hpair w1 w2
• Creates a horizontally adjacent pair of widgets
• Aligns them by their top edges

– Must translate the Gctx when repainting w2
• Size is the sum of their widths and max of their heights

w1

w2

translate Gctx
to repaint w2

h’s width

h’s
height

The hpair Widget

15

let hpair (w1: widget) (w2: widget) : widget =
{

repaint = (fun (g: Gctx.gctx) ->
let (x1, _) = w1.size () in begin

w1.repaint g;
w2.repaint (Gctx.translate g (x1,0))
(* Note translation of the Gctx *)

end);

size = (fun () ->
let (x1, y1) = w1.size () in
let (x2, y2) = w2.size () in
(x1 + x2, max y1 y2))

}

simpleWidget.ml

Translate the Gctx
to shift w2’s position
relative to widget-local
origin.

Drawing: Containers

border

hpair

border

label

hpair

space border

label

Widget tree

Hello World

On the screen

.repaint g

.repaint g1

.repaint g2

.repaint g3

.repaint g4

Container widgets propagate repaint commands to their children:

g1 = Gctx.translate g (2,2)
g2 = Gctx.translate g1 (hello_width,0)
g3 = Gctx.translate g2 (space_width,0)
g4 = Gctx.translate g3 (2,2)

Container Widgets for layout

hlist is a container widget.
It takes a list of widgets and
turns them into a single one
by laying them out
horizontally (using hpair).

18

let color_toolbar : widget = hlist
[color_button black; spacer;

color_button white; spacer;
color_button red; spacer;
color_button green; spacer;
color_button blue; spacer;
color_button yellow; spacer;
color_button cyan; spacer;
color_button magenta]

paint.ml

lightbulb demo

Clicking here
makes the “lightbulb” turn on
and changes label text

Clicking again
makes it turn back off

lightbulb demo

canvas,
with border

label, with borderspace

Events and Event Handling

Event loop with event handling

let run (w:widget) : unit =
let g = Gctx.top_level in …create the initial gctx…
Graphics.loop …wait for user input

(fun e ->
clear_graph ();
w.handle g e; …inform widget about the event…
w.repaint g) …update the widget's appearance…

26

Eventloop

let rec loop (f: event -> unit) : unit =
let e = wait_next_event () in
f e;
loop f Graphics

Events

type event

val wait_for_event : unit -> event

type event_type =
| KeyPress of char (* User pressed a key *)
| MouseDown (* Mouse Button pressed, no movement *)
| MouseUp (* Mouse button released, no movement *)
| MouseMove (* Mouse moved with button up *)
| MouseDrag (* Mouse moved with button down *)

val event_type : event -> event_type
val event_pos : event -> gctx -> position

gcxt.mli

Remember:
The graphics context translates the location of the event to widget-local coordinates

Reactive Widgets

• Widgets now have a “method” for handling events
• The eventloop waits for an event and then gives it to the root widget
• The widgets forward the event down the tree, according to the

position of the event

type widget = {
repaint : Gctx.gctx -> unit;
size : unit -> Gctx.dimension;
handle : Gctx.gctx -> Gctx.event -> unit

}

widget.mli

Event-handling: Containers

border

hpair

border

label

hpair

space border

label

Widget tree

Hello World

On the screen

User clicks,
generating

event e
.handle g e

.handle g1 e

.handle g2 e

.handle g3 e

.handle g4 e

Container widgets propagate events to their children:

Routing events
through container widgets

Event Handling: Routing
• When a container widget handles an event, it passes the event to the

appropriate child
• The Gctx.gctx must be translated so that the child can interpret the event

in its own local coordinates.

let border (w:widget):widget =
{ repaint = …;

size = …;
handle = (fun (g:Gctx.gctx) (e:Gctx.event) ->

w.handle (Gctx.translate g (2,2)) e);
}

widget.ml

Consider routing an event through an hpair widget
constructed by:

The event will always be propagated either to w1 or w2.

1. True

2. False

let hp = hpair w1 w2

Answer: False

Routing events through hpair widgets

• There are three cases for routing in an hpair.
• An event in the “empty area” should not be sent to either w1

or w2.

w1

w2

h’s width

h’s
height

Drop this
event

Route to
w1

Route to
w2

Routing events through hpair widgets
• The event handler of an hpair must check to see whether the event should

be handled by the left or right widget.
– Check the event’s coordinates against the size of the left widget
– If the event is within the left widget, let it handle the event
– Otherwise check the event’s coordinates against the right child’s
– If the right child gets the event, don’t forget to translate its coordinates

handle =
(fun (g:Gctx.gctx) (e:Gctx.event) ->

if event_within g e (w1.size ())
then w1.handle g e
else
let g = (Gctx.translate g (fst (w1.size ()), 0)) in

if event_within g e (w2.size ())
then w2.handle g e
else ())

Stateful Widgets

How can widgets react to events?

A stateful label Widget

• The label object can make its string mutable. The “methods” can refer to
this mutable string.

• But how can we change this string in response to an event?

let label (s: string) : widget =
let r = { contents = s } in
{ repaint = (fun (g: Gctx.gctx) ->

Gctx.draw_string g (0,0) r.contents);
handle = (fun _ _ -> ());
size = (fun () -> Gctx.text_size r.contents)

}

(not very useful first stab at a)
v

A stateful label Widget

• A controller gives access to the shared state.
– Here, the label_controller object returned by label provides a way to

set the label string

type label_controller = { set_label: string -> unit }

let label (s: string) : widget * label_controller =
let r = { contents = s } in

({ repaint = (fun (g: Gctx.gctx) ->
Gctx.draw_string g (0,0) r.contents);

handle = (fun _ _ -> ());
size = (fun () -> Gctx.text_size r.contents)

}
,
{ set_label = fun (s: string) -> r.contents <- s })

widget.ml

