
Programming Languages
and Techniques

(CIS120)

Lecture 23

Static Methods, Java Arrays
Chapters 20 & 21

Static Methods and Fields

functions and global state

Java Main Entry Point

• Program starts running at main
– args is an array of Strings (passed in from the command line)
– must be public
– returns void (i.e. is a command)

• What does static mean?

class MainClass {

public static void main (String[] args) {
…

}

}

mantra

Static == Decided at Compile Time
Dynamic == Decided at Run Time

When is Compile-time?
• In Codio: "Build Project", in Eclipse: with every save
• Check syntax & types quickly, no ASM
• Static methods resolved by names of classes

When is Run time?
• In Codio: "run GUI", in Eclipse: green play button
• Execute code starting with main method
• ASM models what happens at run time
• (Dynamic) methods resolved by runtime value of objects

Static method example
public class Max {

public static int max (int x, int y) {
if (x > y) {

return x;
} else {

return y;
}

}

public static int max3(int x, int y, int z) {
return max(max(x,y), z);

}
} public class Main {

public static void main (String[] args) {

System.out.println(Max.max(3,4));
return;

}
}

closest analogue of top-level
functions in OCaml, but
must be a member of some class

Internally (within the
same class), call with just
the method name

Externally, prefix with
name of the class

main method must be
static; it is invoked to
start the program running

Static vs. Dynamic Methods
• Static Methods are independent of object values

– They are associated with a whole Class not an instance of the Class
– Similar to OCaml functions
– Cannot refer to the local state of objects (fields or normal methods)

• Use static methods for:
– Non-OO programming
– Programming with primitive types: Math.sin(60), Integer.toString(3),

Boolean.valueOf(“true”)
– “public static void main”

• “Normal” methods are dynamic
– Need access to the local state of the particular object on which they are

invoked
– We know only at runtime which method will get called

void moveTwice (Displaceable o) {
o.move (1,1); o.move(1,1);

}

Method call examples
• Calling a (dynamic) method of an object (o) that returns a number:

• Calling a static method of a class (C) that returns a number:

• Calling a method that returns void:

• Calling a static or dynamic method in a method of the same class:

• Calling (dynamic) methods that return objects:

o.m();

x = o.m() + 5;

x = o.m().n();
x = o.m().n().x().y().z().a().b().c().d().e();

m();

C.m();

x = C.m() + 5;

Static Dynamic

this.m();C.m();Static DynamicEither

Static Class Members
• Static methods can depend only on other static things

– Static fields and methods, from the same or other classes

• Static methods can create new objects and use them
– This is typically how main works

• public static fields are the "global" state of the program
– Mutable global state should generally be avoided
– Immutable global fields are useful: for constants like pi

public static final double PI = 3.14159265359793238462643383279;

Which static method can we add to this class?

public class Counter {

private int r;

public Counter () {
r = 0;

}

public int inc () {
r = r + 1;
return r;

}

// A,B, or C here ?

}

public static int dec () {
r = r – 1;
return r;

}

Answer: C

public static int inc2 () {
inc();
return inc();

}

public static int getInitialVal () {
return 0;

}

A.

B.

C.

Static vs. Dynamic Class Members
public class FancyCounter {
private int c = 0;
private static int total = 0;

public int inc () {
c += 1;
total += 1;
return c;

}

public static int getTotal () {
return total;

}
} FancyCounter c1 = new FancyCounter();

FancyCounter c2 = new FancyCounter();
int v1 = c1.inc();
int v2 = c2.inc();
int v3 = FancyCounter.getTotal();
System.out.println(v1 + " " + v2 + " " + v3);

Style: naming conventions

• Identifiers consist of alphanumeric characters and _ and cannot
start with a digit

• The larger the scope, the more informative the name should be
• Conventions are important: variables, methods and classes can

have the same name

Kind Part-of-
speech

Example

class noun RacingCar
field / variable noun initialSpeed
static final field
(constants)

noun MILES_PER_GALLON

method verb shiftGear

Why naming conventions matter
public class Turtle {
private Turtle Turtle;
public Turtle() { }

public Turtle Turtle (Turtle Turtle) {
return Turtle;

}
}

Many more details on good Java style here:
http://www.seas.upenn.edu/~cis120/current/java_style.shtml

Java arrays

Working with static methods

Java Arrays: Indexing

• An array is a sequentially ordered collection of values
that can be indexed in constant time.

• Index elements from 0

• Basic array expression forms
a[i] access element of array a at index i
a[i] = e assign e to element of array a at index i
a.length get the number of elements in a

Java Arrays: Dynamic Creation
• Create an array a of size n with elements of type C

C[] a = new C[n];
• Create an array of four integers, initialized as given:

int[] x = {1, 2, 3, 4};
• Arrays live in the heap; values with array type are mutable

references:
int[] a = new int[4];
a[2] = 7;

Stack Heap

a int[]
length 4

0 0 7 0

length is a final
(immutable) field

Array entries
are mutable

Java Arrays: Aliasing
• Variables of array type are references and can be aliases

int[] a = new int[4];
int[] b = a;
a[2] = 7;
int ans = b[2];

Stack Heap

int[]
length 4

0 0 0 0

a

b
7

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. 4
5. NullPointerException
6. ArrayIndexOutOfBoundsException

int[] a = {1, 2, 3, 4};
int ans = a[a.length];

Answer: ArrayIndexOutOfBoundsException

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. 0
5. NullPointerException
6. ArrayIndexOutOfBoundsException

int[] a = null;
int ans = a.length;

Answer: NullPointerException

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. 0
5. NullPointerException
6. ArrayIndexOutOfBoundsException

int[] a = {};
int ans = a.length;

Answer: 0

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. 0
5. NullPointerException
6. ArrayIndexOutOfBoundsException

int[] a = {1, 2, 3, 4};
int[] b = a;
b[0] = 0;
int ans = a[0];

Answer: 0

Array Iteration

for (int i = 0; i < a.length; i++) {
total += a[i];

}

static double sum(double[] a) {
double total = 0;
for (int i = 0; i < a.length; i++) {
total += a[i];

}
return total;

}

For loops
initialization

loop body

loop condition update

General pattern for computing info about an array

Multidimensional Arrays

Multi-Dimensional Arrays

String[][] names = {{"Mr. ", "Mrs. ", "Ms. "},
{"Smith", "Jones"}};

System.out.println(names[0][0] + names[1][0]);
// --> Mr. Smith

System.out.println(names[0][2] + names[1][1]);
// --> Ms. Jones

A 2-d array is just an array of arrays...

More brackets → more dimensions

String[][] just means (String[])[]
names[1][1] just means (names[1])[1]

Multi-Dimensional Arrays

int[][] products = new int[5][];
for(int col = 0; col < 5; col++) {

products[col] = new int[col+1];
for(int row = 0; row <= col; row++) {

products[col][row] = col * row;
}

}

What would a “Java ASM”
stack and heap look like
after running this program?

Multi-Dimensional Arrays

int[][] products = new int[5][];
for(int col = 0; col < 5; col++) {

products[col] = new int[col+1];
for(int row = 0; row <= col; row++) {

products[col][row] = col * row;
}

}

0 0 0 0 0

1 2 3 4

4 6 8

9 12

16

products

Stack Heap

Note: This heap picture
is simplified – it omits the
class identifiers and
length fields for all 6 of
the arrays depicted.
(Contrast with the array
shown earlier.)

Note also that orientation
doesn’t matter on the heap.

Demo

ArrayDemo.java

Design Exercise: Resizable Arrays

Arrays that grow without bound.

Resizable Arrays
public class ResArray {

/** Constructor, takes no arguments. */
public ResArray() { … }

/** Access the array at position i. If position i has not yet
* been initialized, return 0.
*/

public int get(int i) { … }

/** Modify the array at position i to contain the value v. */
public void set(int i, int v) { … }

/** Return the extent of the array. */
public int getExtent() { … }

}
Object Invariant: extent is 1 past

the last nonzero value in data
(can be 0 if the array is all zeros)

