
Programming Languages
and Techniques

(CIS120)

Lecture 26

Static Types vs. Dynamic Classes
The Java ASM
Chapters 23 & 24

Quick Review:
Java Types and Interfaces

Review: Static Types
• Types stop you from using values incorrectly

– 3 + true
– (new Counter()).m()

• All expressions have types
– 3 + 4 has type int
– “A”.toLowerCase() has type String

• How do we know if x.m() is correct? or x+3?
– depends on the type of x

• Type restrictions preserve the types of variables
– assignment "x = 3" must be to values with compatible types
– methods "o.m(3)" must be called with compatible arguments

4

HOWEVER: in Java, values can have multiple types....

Interfaces
• Give a type for an object based on what it does, not

on how it was constructed
• Example: Interface for objects that have a position

and can be moved

public interface Displaceable {
public int getX();
public int getY();
public void move(int dx, int dy);

}
No fields, no constructors, no

method bodies!

keyword

5

public class Point implements Displaceable {
private int x, y;
public Point(int x0, int y0) {
x = x0;
y = y0;

}
public int getX() { return x; }
public int getY() { return y; }
public void move(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

Implementing the interface
• A class that implements an interface must provide

appropriate definitions for the methods specified in the
interface

methods
required to
satisfy contract

interfaces
implemented

6

Another implementation

public class Circle implements Displaceable {

public Circle(int x, int y, int initRadius) { … }

public int getX() { … }
public int getY() { … }
public void move(int dx, int dy) { … }

}

Objects constructed from different classes
can satisfy the same interface

7

Implementing multiple interfaces

public class Circle implements Displaceable, Area {

// constructor
// implementation of Displaceable methods

// new method
public double getArea() {

...
}

}

public interface Area {
public double getArea();

}

Classes can implement
multiple interfaces by
including all of the
required methods

8

Subtyping

Definition: Type A can be declared to be a subtype of type B
if values of type A can do anything that values of type B can
do. Type B is called a supertype of A.

Example: A class that implements an interface declares a
subtyping relationship

Point is a subtype of Displaceable
Circle is a subtype of Displaceable and Area

Subtypes and Supertypes
• An interface represents a point of view about an object
• Classes can implement multiple interfaces

interfaces

classes

classes implement
interfaces

Types can have many different supertypes / subtypes
12

Subtype Polymorphism*
• Main idea:

• If B is a subtype of A, it provides all of A’s (public) methods
• The behavior of a nonstatic method (like move) depends on

the implementation in class B

Anywhere an object of type A is needed, an object that
actually belongs to a subtype of A can be provided.

*polymorphism = “many shapes”

// in class C
public static void leapIt(Displaceable c) {

c.move(1000,1000);
}
// somewhere else
C.leapIt(new Circle (p, 10));

13

• A a variable declared with type A can store any object that is
a subtype of A

• Methods with parameters of type A must be called with
arguments that are subtypes of A

Subtyping and Variables

Displaceable a = new Circle(new Point(2,3), 1);

subtype of Displaceablesupertype of Circle

14

Extension

Interface Extension – An interface that extends
another interface declares a subtype

Class Extension – A class that extends another
class declares a subtype

Interface Extension
• Build richer interface hierarchies by extending existing

interfaces.

public interface Displaceable {
int getX();
int getY();
void move(int dx, int dy);

}

public interface Area {
double getArea();

}

public interface Shape extends Displaceable, Area {
Rectangle getBoundingBox();

}

The Shape type includes all
the methods of Displaceable

and Area, plus the new
getBoundingBox method.

Note the “extends” keyword.

16

Interface Hierarchy

• Shape is a subtype of both Displaceable and Area.
• Circle and Rectangle are both subtypes of Shape; by

transitivity, both are also subtypes of Displaceable and Area.
• Note that one interface may extend several others.

– Interfaces do not necessarily form a tree, but the interface hierarchy
has no cycles.

class Point implements Displaceable {
… // omitted

}
class Circle implements Shape {

… // omitted
}
class Rectangle implements Shape {

… // omitted
}

Displaceable Area

Shape

Point Circle Rectangle

17

extends
implements

Class Extension: Inheritance
• Classes, like interfaces, can also extend one another.
– Unlike interfaces, a class can extend only one other class.

• The extending class inherits all of the fields and
methods of its superclass, and may include
additional fields or methods.
– This captures the “is a” relationship between objects

(e.g. a Car is a Vehicle).

• Design Tip: Class extension should never be used when “is a”
does not relate the subtype to the supertype.

18

Simple Inheritance
• In simple inheritance, a subclass only adds new fields or

methods.

• Use simple inheritance to share common code among related
classes.

• Example: Suppose Point, Circle, and Rectangle have
identical code for getX(), getY(), and move() methods when
implementing Displaceable. Let's put this code in one
place.

19

Subtyping with Inheritance

Displaceable Area

Shape

Point Circle Rectangle

DisplaceableImpl

extends

implements

-Type C is a subtype of D if D is reachable from C
by following zero or more edges upwards in the
hierarchy.

- e.g. Circle is a subtype of Area, but Point is not
20

Gotcha: Constructors are not inherited
– Instead, each subclass constructor should invoke a

constructor of the superclass using the keyword super
– super must be the first line of the subclass constructor

(If the parent class constructor takes no arguments, it is OK to
drop the call to super)

Inheritance: Constructors

public Circle(Point pt, int radius) {
super(pt.getX(),pt.getY());
this.radius = radius;

}

22

Class Object
public class Object {
boolean equals(Object o) {
… // test for equality

}
String toString() {
… // return a string representation

}
… // other methods omitted

}

• Object is the root of the class tree
– Classes with no “extends” clause implicitly extend Object
– Arrays also implement the methods of Object
– This class provides methods useful for all objects to support

• Object is the top (i.e., “most super”) type in the subtyping hierarchy

23

Recap

Displaceable Area

Shape

Point Circle Rectangle

Object

DisplaceableImpl

extends

implements
Subtype by fiat

interfaces
classes (form a tree)

- Interfaces extend (possibly many) interfaces
- Classes implement (possibly many) interfaces
- Classes (except Object) extend exactly one

other class (Object by default)
- Interface types (and arrays) are subtypes “by

fiat” of Object

24

Other forms of inheritance
• Java has other features related to inheritance (some of which we

will discuss later in the course):
– A subclass might override (re-implement) a method already found in the

superclass.
– A class might be abstract – i.e. it does not provide implementations for all

of its methods (its subclasses must provide them)

• These features are tricky to use properly, and the need for them
arises only in special cases
– Designing complex, reusable libraries
– Methods like equals and toString

• We recommend avoiding all forms of inheritance (even “simple
inheritance”) whenever possible: use interfaces and composition
instead

Especially: Avoid method overriding except in a few
special cases

25

Static Types vs. Dynamic Classes

"Static" types vs. "Dynamic" classes
• The static type of an expression is a type that describes what

we know about the expression at compile-time (without
thinking about the execution of the program)
Displaceable x;

• The dynamic class of an object is the class that was used to
create it (at run time)
x = new Point(2,3)

• In OCaml, we only had static types
• In Java, we also have dynamic classes because of objects

– The dynamic class will always be a subtype of its static type
– The dynamic class determines what methods are run

27

Static type vs. Dynamic type

1. Area
2. Circle
3. None of the above
4. Not well typed

What is the static
type of a1 on line A?

Area

public Area asArea (Area a)
{ return a; }

…

Point p = new Point(5,5)
Circle c = new Circle (p,3);
Area a1 = c; // A

__B__ y = asArea (c);

29

Static type vs. Dynamic type

1. Area
2. Circle
3. None of the above
4. Not well typed

What is the dynamic
class of a1 when
execution reaches A?

Circle

public Area asArea (Area a)
{ return a; }

…

Point p = new Point(5,5)
Circle c = new Circle (p,3);
Area a1 = c; // A

__B__ y = asArea (c);

31

Static type vs. Dynamic type

1. Area
2. Circle
3. Either of the above
4. Not well typed

What type could we
declare for x (in blank
B)?

Area

public Area asArea (Area a)
{ return a; }

…

Point p = new Point(5,5)
Circle c = new Circle (p,3);
Area a1 = c; // A

__B__ y = asArea (c);

33

Inheritance and Dynamic Dispatch

When do constructors execute?
How are fields accessed?

What code runs in a method call?
What is ‘this’?

How do method calls work?

• What code gets run in a method invocation?
o.move(3,4);

• When that code is running, how does it access the fields of
the object that invoked it?

x = x + dx;

• When does the code in a constructor get executed?

• What if the method was inherited from a superclass?

ASM refinement: The Class Table
Workspace Stack Heap

…

Class Table

ASM refinement: The Class Table

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

}

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

}

Class Table

Counter
extends

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

The class table contains:
• the code for each method,
• references to each class’s parent, and
• the class’s static members.

this
• Inside a non-static method, the variable this is a reference

to the object on which the method was invoked.

• References to local fields and methods have an implicit
“this.” in front of them.

class C {
private int f;

public void copyF(C other) {
this.f = other.f;

}
}

this C
f 0

Stack Heap

…
…

…

An Example

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

}

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

}

// … somewhere in main:
Decr d = new Decr(2);
d.dec();
int x = d.get();

…with Explicit this and super

public class Counter extends Object {
private int x;
public Counter () { super(); this.x = 0; }
public void incBy(int d) { this.x = this.x + d; }
public int get() { return this.x; }

}

public class Decr extends Counter {
private int y;
public Decr (int initY) { super(); this.y = initY; }
public void dec() { this.incBy(-this.y); }

}

// … somewhere in main:
Decr d = new Decr(2);
d.dec();
int x = d.get();

Constructing an Object
Workspace Stack Heap

Decr d = new Decr(2);
d.dec();
int x = d.get();

Class Table

Counter
extends

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Allocating Space on the Heap
Workspace Stack Heap

super();
this.y = initY;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Invoking a constructor:
• allocates space for a new object

in the heap
• includes slots for all fields of all

ancestors in the class tree
(here: x and y)
• creates a pointer to the class –

this is the object’s dynamic type
• runs the constructor body after

pushing parameters and this
onto the stack

Decr
x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

initY 2

Note: fields start with a
“sensible” default

- 0 for numeric values
- null for references

Calling super
Workspace Stack Heap

super();
this.y = initY;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Call to super:
• The constructor (implicitly) calls

the super constructor
• Invoking a

method or constructor pushes the
saved workspace, the method
params (none here) and a new
this pointer.

Decr
x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

initY 2

Abstract Stack Machine
Workspace Stack Heap

super();
this.x = 0;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

(Running Object’s default
constructor omitted.)

Decr
x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

_;
this.y = initY;

this

initY 2

Assigning to a Field
Workspace Stack Heap

this.x = 0;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

_;
this.y = initY;

this

initY 2

Assignment into the this.x field
goes in two steps:

- look up the value of this in the
stack

- write to the “x” slot of that
object.

Assigning to a Field
Workspace Stack Heap

.x = 0;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

_;
this.y = initY;

this

initY 2

Assignment into the this.x field
goes in two steps:

- look up the value of this in the
stack

- write to the “x” slot of that
object.

Done with the call
Workspace Stack Heap

;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

_;
this.y = initY;

this

initY 2

Done with the call to “super”, so
pop the stack to the previous
workspace.

Continuing
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

initY 2

Continue in the Decr class’s
constructor.

this.y = initY;

Abstract Stack Machine
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 0

Decr d = _;
d.dec();
int x = d.get();

this

initY 2

this.y = 2;

Assigning to a field
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 2

Decr d = _;
d.dec();
int x = d.get();

this

initY 2

this.y = 2;

Assignment into the this.y
field.

(This really takes two steps as we
saw earlier, but we’re skipping
some for the sake of brevity…)

Done with the call
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 2

Decr d = _;
d.dec();
int x = d.get();

this

initY 2

;

Done with the call to the Decr
constructor, so pop the stack and
return to the saved workspace,
returning the newly allocated
object (now in the this pointer).

Returning the Newly Constructed Object
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 2

Continue executing the program.

Decr d = ;
d.dec();
int x = d.get();

Allocating a local variable
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 2

Allocate a stack slot for the local
variable d. Note that it’s mutable…
(bold box in the diagram).

Aside: since, by default, fields and
local variables are mutable in Java,
we sometimes omit the bold boxes
and just assume the contents can
be modified.

d.dec();
int x = d.get();

d

d

Dynamic Dispatch: Finding the Code
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 2

Invoke the dec method on the
object. The code is found by
“pointer chasing” through the class
hierarchy.

This is an example of dynamic
dispatch: Which code is run
depends on the dynamic class of
the object. (In this case, Decr.)

.dec();
int x = d.get();

Search through the
methods of the Decr,
class trying to find one
called dec.

d

Dynamic Dispatch: Finding the Code
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 2

Call the method, remembering the
current workspace and pushing the
this pointer and any arguments
(none in this case).

this.incBy(-this.y);

_;
int x = d.get();

this

d

Reading a Field’s Contents
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 2

Read from the y slot of the object.

this.incBy(- .y);

_;
int x = d.get();

this

d

Dynamic Dispatch, Again
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 2

.incBy(-2);

_;
int x = d.get();

this

Search through the
methods of the Decr
class looking for one
called incBy.
If the search fails,
recursively search the
parent classes.

Invoke the incBy method on the
object via dynamic dispatch.

In this case, the incBy method is
inherited from the parent, so
dynamic dispatch must search up
the class tree, looking for the
implementation code.

The search is guaranteed to
succeed – Java’s static type system
ensures this.

d

Running the body of incBy
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x 0

y 2

this.x = this.x + d;

_;
int x = d.get();

this

It takes a few steps…
Body of incBy:

- reads this.x
- looks up d
- computes result this.x + d
- stores the answer (-2) in this.x

_;

d -2

this

this.x = -2;

-2

d

After a few more steps…
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x -2

y 2

int x = d.get();

Now use dynamic dispatch to invoke the
get method for d. This involves
searching up the class hierarchy again…

d

After yet a few more steps…
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Decr
extends Counter

Decr(int initY) { … }

void dec(){incBy(-y);}

Object
String toString(){…

boolean equals…

…

Decr
x -2

y 2

Done! (Phew!)

x -2

Summary: this and dynamic dispatch
• When object’s method is invoked, as in o.m(), the code that runs is

determined by o’s dynamic class.
– The dynamic class, represented as a pointer into the class table, is included in

the object structure in the heap
– If the method is inherited from a superclass, determining the code for m might

require searching up the class hierarchy via pointers in the class table
– This process of dynamic dispatch is the heart of OOP!

• Once the code for m has been determined, a binding for this is pushed
onto the stack.
– The this pointer is used to resolve field accesses and method invocations

inside the code.

Refinements to the Stack Machine
• Code is stored in a class table, which is a special part of the heap:

– When a program starts, the JVM initializes the class table
– Each class has a pointer to its (unique) parent in the class tree
– A class stores the constructor and method code for its instances
– The class also stores static members

• Constructors:
– Allocate space in the heap
– (Implicitly) invoke the superclass constructor, then run the constructor body

• Objects and their methods:
– Each object in the heap has a pointer to the class table of its dynamic type (the one

it was created with via new).
– A method invocation “o.m(…)” uses o’s class table to “dispatch” to the

appropriate method code (might involve searching up the class hierarchy).
– Methods and constructors take an implicit “this” parameter, which is a pointer to

the object whose method was invoked. Fields& methods are accessed with this.

Inheritance Example

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

}
class Decr extends Counter {

private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

}
// … somewhere in main:
Decr d = new Decr(2);
d.dec();
int x = d.get();

What is the value of x
at the end of this
computation?

1. -2
2. -1
3. 0
4. 1
5. 2
6. NPE
7. Doesn't type

checkAnswer: -2

