
Programming Languages
and Techniques

(CIS120)

Lecture 32

Histogram Demo
Chapter 28

Design Example: Histogram.java

A design exercise using java.io and the
generic collection libraries

(SEE COURSE NOTES FOR THE FULL STORY)

Problem Statement
Write a program that, given a filename for a text file as input,
calculates the frequencies (i.e. number of occurrences) of each
distinct word of the file. The program should then print the
frequency distribution to the console as a sequence of “word:
freq” pairs (one per line).

Histogram result:
The : 1
Write : 1
a : 4
as : 2
calculates : 1
command : 1
console : 1
distinct : 1
distribution : 1
e : 1

each : 1
file : 2
filename : 1
for : 1
freq : 1
frequencies : 1
frequency : 1
given : 1
i : 1
input : 1

line : 2
number : 1
occurrences : 1
of : 4
one : 1
pairs : 1
per : 1
print : 1
program : 2
sequence : 1

should : 1
text : 1
that : 1
the : 4
then : 1
to : 1
word : 2

Decompose the problem
• Sub-problems:

1. How do we iterate through the text file, identifying all of
the words?

2. Once we can produce a stream of words, how do we
calculate their frequency?

3. Once we have calculated the frequencies, how do we
print out the result?

• What is the interface between these components?
• Can we test them individually?

How to produce a stream of words?
1. How do we iterate through the text file, identifying all of the

words?

• Key idea: Define a class (WordScanner) that implements this
interface by reading words from a text file.

public interface Iterator<T> {
// returns true if the iteration has more elements
public boolean hasNext();

// returns the next element in the iteration
public T next();

}

Coding: Histogram.java

WordScanner.java
Histogram.java

@Test
public void testNull() {
try {
new WordScanner(null);

} catch (NullPointerException e) {
return;

}
fail();

}

True or False: The following test indicates that
WordScanner should raise a NullPointerException
when called with null.

ANSWER: True

Iterator – hasNext() – First Attempt?

@Override
public boolean hasNext() {

boolean value = true;
try {

int c = r.read();
if (c == -1) {

value = false;
}

} catch (IOException io) {
System.out.println("IO Exception happened");

}
return value;

}

public class WordScanner implements Iterator<String> {
private Reader r;
private int c = -1;
// ...

}

Which combination of the following properties form a useful
invariant for the WordScanner fields?

1. r is not null
2. r is null if and only if there is no next word

A. c is 0 if there is no next word and nonzero otherwise
B. c is -1 if there is no next word and contains the first

character of the next word otherwise

public class WordScanner implements Iterator<String> {
private Reader r;
private int c = -1;
// ...

}

Which combination of the following properties form a useful
invariant for the WordScanner fields?

1. r is not null
2. r is null if and only if there is no next word

A. c is 0 if there is no next word and nonzero otherwise
B. c is -1 if there is no next word and contains the first

character of the next word otherwise

ANSWER: 1 & B

Some Advice on Debugging

Use the Scientific Method
1. Make an observation / ask a question

– One of my test cases fails!
– Which assertion? What exception? What is the stack trace?

2. Formulate a hypothesis
– Could I have passed null as

bar to foo.munge(bar)?
3. Conduct an experiment

– Modify the program to try to confirm
or refute the hypothesis.

– Don't make random changes!
– Predict the outcome of your experiment
– Re-run test cases, or execute the program

4. Analyze the results
– Did the modified code behave as expected?

5. Draw conclusions / Report results
– Create a new test case (if appropriate)

Observing Behavior
• Understand exceptions and their stack traces

– They give you a lot of information

• If you are using Eclipse, it is worth taking a little time to learn
how to use the debugger!
– See Piazza for a Quick Start tutorial

• Simple print statements are also very effective!
– Confirm or disprove hypothesis
– e.g.: The code reached "HERE!" (or not)

