Programming Languages
and Techniques
(C1S120)

Lecture 32

Histogram Demo
Chapter 28




Design Example: Histogram.java

A design exercise using java.io and the
generic collection libraries

(SEE COURSE NOTES FOR THE FULL STORY)




Problem Statement

Write a program that, given a filename for a text file as input,
calculates the frequencies (i.e. number of occurrences) of each
distinct word of the file. The program should then print the
frequency distribution to the console as a sequence of “word:
freq” pairs (one per line).

Histogram result:

The:1 each:1 line : 2 should : 1
Write : 1 file: 2 number : 1 text: 1
a:4 filename : 1 occurrences : 1 that: 1
as: 2 for:1 of : 4 the : 4
calculates : 1 freq:1 one:1 then: 1
command : 1 frequencies: 1 pairs : 1 to: 1
console : 1 frequency : 1 per:1 word : 2
distinct : 1 given : 1 print: 1

distribution : 1 i:1 program : 2

e:1l input : 1 sequence : 1




Decompose the problem

e Sub-problems:

1. How do we iterate through the text file, identifying all of
the words?

2. Once we can produce a stream of words, how do we
calculate their frequency?

3. Once we have calculated the frequencies, how do we
print out the result?

 What is the interface between these components?

 (Can we test them individually?




How to produce a stream of words?

1. How do we iterate through the text file, identifying all of the
words?

public interface Iterator<T> {

// returns true if the iteration has more elements
public boolean hasNext();

// returns the next element in the iteration
public T next();

* Key idea: Define a class (WordScanner) that implements this
interface by reading words from a text file.




Coding: Histogram.java

WordScanner.java

Histogram.java




True or False: The following test indicates that
WordScanner should raise a NullPointerException
when called with null.

@Test
public void testNull() {
try {
new WordScanner(null);
} catch (NullPointerException e) {
return;

}
fail();
}

ANSWER: True




Iterator — hasNext() — First Attempt?

@Override
public boolean hasNext() {
boolean value = true;

try {
int ¢ = r.read();
if (c == -1) {
value = false;
}

} catch (IOException io) {
System.out.println("I0 Exception happened");
s

return value;

}




public class WordScanner implements Iterator<String> {
private Reader r;
private int c = -1;

/...

Which combination of the following properties form a useful
invariant for the WordScanner fields?

1. risnot null
2. risnullif and only if there is no next word

A. cisOif thereis no next word and nonzero otherwise
B. cis-1ifthereis no next word and contains the first
character of the next word otherwise




public class WordScanner implements Iterator<String> {
private Reader r;
private int c = -1;

/...

Which combination of the following properties form a useful
invariant for the WordScanner fields?

1. risnot null
2. risnullif and only if there is no next word

A. cisOif thereis no next word and nonzero otherwise

B. cis-1ifthereis no next word and contains the first
character of the next word otherwise

ANSWER: 1 & B




Some Advice on Debugging




Use the Scientific Method

5.

Make an observation / ask a question
— One of my test cases fails!
— Which assertion? What exception? What is the stack trace?

Formulate a hypothesis

— Could | have passed null as
bar to foo.munge(bar)?

Conduct an experiment

— Modify the program to try to confirm
or refute the hypothesis.

— Don't make random changes!
— Predict the outcome of your experiment
— Re-run test cases, or execute the program

Analyze the results
— Did the modified code behave as expected?

Draw conclusions / Report results
— Create a new test case (if appropriate)

Conclude




Observing Behavior

* Understand exceptions and their stack traces

— They give you a lot of information

* |f you are using Eclipse, it is worth taking a little time to learn

how to use the debugger!
— See Piazza for a Quick Start tutorial

* Simple print statements are also very effective!

— Confirm or disprove hypothesis
— e.g.: The code reached "HERE!" (or not)



