
Programming Languages
and Techniques

(CIS120)

Lecture 35

Swing II: Event Handlers,
Inner Classes and Layout

Chapter 30

CIS 120

Swing: User Interaction

Java’s GUI Library

CIS 120

Start Simple: Lightswitch
Task: Program an application that displays a button. When the
button is pressed, it toggles a “lightbulb” on and off.

Key idea: use a ButtonListener to toggle the state of the
"lightbulb"

CIS 120

OnOffDemo

The Lightswitch GUI program in Swing.

CIS 120

Display the Lightbulb
class LightBulb extends JComponent {

private boolean isOn = false;

public void flip() {
isOn = !isOn;

}
public void paintComponent(Graphics gc) {

if (isOn) {
gc.setColor(Color.YELLOW);

} else {
gc.setColor(Color.BLACK);

}
gc.fillRect(0, 0, 100, 100);

}
public Dimension getPreferredSize() {

return new Dimension(100,100);
}

}

Draw the
Light bulb here
using the graphics
context

Set the size of the
window

Remember the private
state of the lightbulb

CIS 120

Main Class
public class OnOff implements Runnable {

public void run() {
JFrame frame = new JFrame("On/Off Switch");
JPanel panel = new JPanel();
frame.getContentPane().add(panel);
LightBulb bulb = new LightBulb();
panel.add(bulb);
JButton button = new JButton("On/Off");
panel.add(button);
button.addActionListener(new ButtonListener(bulb));
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);

}
public static void main(String[] args) {

SwingUtilities.invokeLater(new OnOff());
}

}

Open frame and
make a panel

Create bulb and
button

Start the (Swing)
application

CIS 120

Making the Button DO something

class ButtonListener implements ActionListener {
private LightBulb bulb;
public ButtonListener (LightBulb b) {

bulb = b;
}

@Override
public void actionPerformed(ActionEvent e) {

bulb.flip();
bulb.repaint();

}
}

Note that “repaint” does not
necessarily do any repainting
now! It is simply a notification to
Swing that something needs
repainting.

CIS 120

An Unflattering Comparison

class ButtonListener implements ActionListener {
private LightBulb bulb;
public ButtonListener (LightBulb b) {

bulb = b;
}
@Override
public void actionPerformed(ActionEvent e) {

bulb.flip();
bulb.repaint();

}
}

// somewhere in run …
LightBulb bulb = new LightBulb();
JButton button = new JButton("On/Off");
button.addActionListener(new ButtonListener(bulb));

let bulb, bulb_flip = make_bulb ()
let onoff,_, bnc = button "ON/Off"
;; bnc.add_event_listener (mouseclick_listener bulb_flip)

Java
O
Cam

l

CIS 120

Too much “boilerplate”!
• ButtonListener really only needs to do flip() and repaint()
• But we need all this extra boilerplate code to build the class
• Often we will only instantiate one instance of a given Listener

class in a GUI

class ButtonListener implements ActionListener {
private LightBulb bulb;
public ButtonListener (LightBulb b) {

bulb = b;
}
@Override
public void actionPerformed(ActionEvent e) {

bulb.flip();
bulb.repaint();

}
}

CIS 120

Inner Classes

CIS 120

Inner Classes
• Useful in situations where objects require “deep access” to

each other’s internal state

• Replaces tangled workarounds like the “owner object” pattern
– Solution with inner classes is easier to read
– No need to allow public access to instance variables of outer class

• Also called “dynamic nested classes”

CIS 120

class Outer {
private int outerVar;
public Outer () {

outerVar = 6;
}
public class Inner {

private int innerVar;
public Inner(int z) {

innerVar = z;
}
public int getSum() {

return outerVar + innerVar;
}

}
}

Basic Example

Key idea: Classes can be members of other classes…

Reference from inner
class to field bound in
outer class

Name of this class (i.e., the
static type of objects that this
class creates) is Outer.Inner

Inner classes can have
their own fields and
methods.

CIS 120

Constructing Inner Class Objects
Based on your understanding of the Java
object model, which of the following make
sense as ways to construct an object of an
inner class type?

1. Outer.Inner obj =
new Outer.Inner(2);

2. Outer.Inner obj =
(new Outer()).new Inner(2);

3. Outer.Inner obj = new
Inner(2);

4. Outer.Inner obj =
Outer.Inner.new(2);

Answer: 2 – the inner class instances can refer to non-static fields of the
outer class (even in the constructor), so the invocation of "new" must
be relative to an existing instance of the Outer class.

class Outer {
private int outerVar;
public Outer () {

outerVar = 6;
}
public class Inner {

private int innerVar;
public Inner(int z) {

innerVar = z;
}
public int getSum() {

return outerVar +
innerVar;

}
}

}

CIS 120

Object Creation
• Inner classes can refer to the instance variables and methods of the

outer class
• Inner class instances usually created by the methods/constructors

of the outer class
public Outer () {

Inner b = new Inner ();
}

• Inner class instances cannot be created independently of a
containing class instance.

Outer.Inner b = new Outer.Inner()

Outer a = new Outer();
Outer.Inner b = a.new Inner();

Outer.Inner b = (new Outer()).new Inner();

Actually this.new

CIS 120

Anonymous Inner Classes
• New expression form: define a class and create an object

from it all at once, inside a method of another class

new InterfaceOrClassName() {
public void method1(int x) {

// code for method1
}
public void method2(char y) {

// code for method2
}

}

Static type of the expression
is the Interface/superclass
used to create it

Dynamic class of the created
object is anonymous!
Can't refer to it.

Normal class
definition,
no constructors
allowed

New keyword

CIS 120

Anonymous Inner Classes

• Define a class and create an object from it all at once, inside a
method

final LightBulb bulb = new LightBulb();
JButton button = new JButton("On/Off");

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

bulb.flip();
bulb.repaint();

}
});

CIS 120

Anonymous Inner Classes

line.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

shapes.add(new Line(…));
canvas.repaint();

}
});

Can access fields and
methods of outer class, as
well as final local variables

quit.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

System.exit(0);
}

}); Puts button action with
button definition

CIS 120

Like first-class functions
• Anonymous inner classes are a Java equivalent of OCaml’s

first-class functions
• Both create "delayed computations" that can be stored in a

data structure and run later
– Code stored by the event / action listener
– Code only runs when the button is pressed
– Could run once, many times, or not at all

• Both sorts of computation can refer to variables in the current
scope
– OCaml: Any available variable
– Java: only variables marked final

CIS 120

Lambda Expressions

• Java 8 introduced lambda expressions which are simplified
syntax for anonymous classes with just one method

• Any interface with exactly one method is called a functional
interface

• Syntax: x -> { body } // type of x inferred
(T x) -> { body } // arg x has type T
(T x, W y) -> { body } // multiple arguments

final LightBulb bulb = new LightBulb();
JButton button = new JButton("On/Off");

button.addActionListener(e -> {
bulb.flip();
bulb.repaint();

});

CIS 120

Swing Layout Demo

LayoutDemo.java

CIS 120

What layout would you use for
this app? What components
would you use?

CIS 120

Canvas
subclass of
JPanel
(canvas)

JPanel
(toolbar)

JRadioButton
(point, line)

JCheckbox
(thick)

JButton
(quit)

CIS 120

Paint Revisited

Using Anonymous Inner Classes
Refactoring for OO Design

CIS 120

Paint Revisited
(thoroughly discussed in Chap 31)

Using Anonymous Inner Classes
Refactoring for OO Design

(See PaintA.java … PaintE.java)

CIS 120

Adapters

MouseAdapter
KeyAdapter

CIS 120

Mouse Interaction in Paint

Point
Mode

LineStart
Mode

LineEnd
Mode

Line
Button
press

Point
Button
press

Mouse Released
[add new line,
set preview to null]

Mouse Pressed
[store point,
set preview shape]

Mouse Released (in the canvas)
[add new point]

Mouse Dragged
[update preview]

CIS 120

Two interfaces for mouse listeners
interface MouseListener extends EventListener {

public void mouseClicked(MouseEvent e);
public void mouseEntered(MouseEvent e);
public void mouseExited(MouseEvent e);
public void mousePressed(MouseEvent e);
public void mouseReleased(MouseEvent e);

}

interface MouseMotionListener extends EventListener {
public void mouseDragged(MouseEvent e);

public void mouseMoved(MouseEvent e);
}

CIS 120

Lots of boilerplate
• There are seven methods in the two interfaces.
• We only want to do something interesting for three of them.
• Need "trivial" implementations of the other four to implement

the interface…

• Solution: MouseAdapter class…

public void mouseMoved(MouseEvent e) { return; }
public void mouseClicked(MouseEvent e) { return; }
public void mouseEntered(MouseEvent e) { return; }
public void mouseExited(MouseEvent e) { return; }

CIS 120

Adapter classes:
• Swing provides a collection of abstract event adapter classes
• These adapter classes implement listener interfaces with

empty, do-nothing methods
• To implement a listener class, we extend an adapter class and

override just the methods we need

private class Mouse extends MouseAdapter {
public void mousePressed(MouseEvent e) { … }
public void mouseReleased(MouseEvent e) { … }
public void mouseDragged(MouseEvent e) { … }

}

