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Lambdas & Streams)



The slides touch on
these.  Lecture will
cover only some parts...

• Threads & Synchronization
• Hashing: HashSets & HashMaps
• Java 1.8 Lambdas (& Streams)
• Garbage Collection
• Packages
• JVM (Java Virtual Machine) and compiler details:

– class loaders, security managers, just-in-time compilation

• Advanced Generics
– Bounded Polymorphism: type parameters with ‘extends’ constraints

class C<A extends Runnable> { … }
– Type Erasure
– Interaction between generics and arrays

• Reflection
– The Class class

Advanced Java Miscellany

CIS120

For all the nitty-gritty details:
Java Language Specification
http://docs.oracle.com/javase/specs/



Threads & Synchronization

Avoid Race Conditions!

(see Multithreaded.java)



Threads
• Java programs can be multithreaded
– more than one “thread” of control operating 

simultaneously

• A Thread object can be created from any class that 
implements the Runnable interface
– start: launch the thread 
– join: wait for the thread to finish

• Abstract Stack Machine:
– Each thread has its own workspace and stack
– All threads share a common heap
– Threads can communicate via shared references
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Uses + Perils
• Threads are useful when one program needs to do 

multiple things simultaneously:
– game animation + user input
– chat server interacting with multiple chat clients
– hide latency: do work in one thread while another thread 

waits (e.g. for disk or network I/O)

• Problem:  Race Conditions
– What happens when one thread tries to read a memory 

location at the same time another thread is writing it?
– What if more than one thread tries to write different 

values at the same time?
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(Unsynchronized) Implementation

interface Counter {
public void inc();
public int get();

}

class UCounter implements Counter {
private int cnt = 0;

public void inc() {
cnt = cnt + 1;

}

public int get() {
return cnt;

}
}
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Setting up a Computation Thread
// The computation thread simply increments
// the provided counter 1000 times
class CounterUser implements Runnable {

private Counter c;
private int id;

CounterUser(int id, Counter c) {
this.id = id;
this.c = c;

}

@Override
public void run() {

for (int i = 0; i < 1000; i++) {
// System.out.println("Thread: " + id);
c.inc();

}
}

}
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First Try: Two Threads & One Counter

public class MultiThreaded {

public static void main(String[] args) {
Counter c = new UCounter();  

// set up a race on the shared counter c
Thread t1 = new Thread(new CounterUser(1, c));
Thread t2 = new Thread(new CounterUser(2, c));
t1.start();
t2.start();
try {

t1.join();
t2.join();

} catch (InterruptedException e) {
}
System.out.println("Counter value = " + c.get());

}

}
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Create thread 1
Create thread 2

Start thread 1
Start thread 2

Wait for thread 1 to finish
Wait for thread 2 to finish



What behavior do you expect from Multithreaded.java?

1. The program will print "Counter value = 1000"

2. The program will print "Counter value = 2000"

3. The program will print "Counter value = ????" for 
some other number ????

4. The program will throw an exception.

CIS120

Answer:  The program with print “Counter value = val” 
for 1000 <= val <= 2000.

The answer will likely be different each time the program is run!!!!



Data Races

c.inc()

CIS120

this.cnt = 
this.cnt + 1;

this.cnt = 0 + 1;

this.cnt = 1;

c.inc()

this.cnt = 
this.cnt + 1;

this.cnt = 0 + 1;

this.cnt = 1;

Counter

cnt 0

;

1

Workspace 
(Thread 1)

Workspace 
(Thread 2)

Heap
(Shared)

Both threads invoke the inc method 
of a shared counter object.  The 
individual instructions of this method
interleave such that they both read 0 
and write 1.



The synchronized keyword
• Synchronized methods are atomic
– At most one thread can be executing code within an 

atomic method

• Careful use will eliminate races

• Tradeoff: 
– less concurrency means worse performance
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Second Try: use Synchronization

//This class uses synchronization
class SynchronizedCounter implements Counter {
private int cnt = 0;

public synchronized void inc() {
cnt = cnt + 1;
}

public synchronized int get() {
return cnt;
}

}
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Using The New Counters
public class MultiThreaded {

public static void main(String[] args) {

Counter c = new SynchronizedCounter();  

// set up a race on the shared counter c
Thread t1 = new Thread(new CounterUser(1, c));
Thread t2 = new Thread(new CounterUser(2, c));
t1.start();
t2.start();
try {

t1.join();
t2.join();

} catch (InterruptedException e) {
}

System.out.println("Counter value = " + c.get());
}

}

CIS120

New!!
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Now what behavior do you expect from Multithreaded.java?

1. The program will print "Counter value = 1000"

2. The program will print "Counter value = 2000"

3. The program will print "Counter value = ????" for some 
other number ????

4. The program will throw an exception.

Answer:  The program with print “Counter value = 2000” 
every time.



Other Synchronization in Java
Need thread safe libraries:

– java.util.concurrent has BlockingQueue and ConcurrentMap
– help rule out synchronization errors
– Note: Swing is not thread safe!

• Java also provides locks
– objects that act as synchronizers for blocks of code

• Deadlock: cyclic dependency in synchronization of locks
– Thread A waiting for lock held by B, 

Thread B waiting for lock held by A
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Immutability!
• Note that read-only datastructures are immune to race 

conditions
– It’s OK for multiple threads to read a heap location simultaneously
– Less need for locking, synchronization

• As always: immutable data structures simplify your code

CIS120

Real-world example: 

FaceBook's Haxl Library
• Library written in Haskell
• Concurrency / Distributed Database
• https://github.com/facebook/Haxl



Hash Sets & Hash Maps

array-based implementation of sets and maps



Hash Sets and Maps: The Big Idea
Combine:
• the advantage of arrays:

– efficient random access to its elements

• with the advantage of a map datastructure
– arbitrary keys  (not just integer indices)

How?  
• Create an index into an array by hashing the data in the key to 

turn it into an int
– Java’s hashCode method maps key data to ints
– Generally, the space of keys is much larger than the space of hashes, 

so, unlike array indices, hashCodes might not be unique



Hash Maps, Pictorially

“John Doe”

“Jimmy Bob”

“Jane Smith”

“Joan Jones”

000 null

001

002 null

003

… …

253

254

255 null

hashCode Array

CSCI

Keys Values

CBE

DMD

WUNG

A schematic HashMap taking Strings (student names) to Undergraduate Majors.  The 
hashCode takes each string name to an integer code, which we then take “mod 256” 
to get an array index between 0 and 255.  
For example,   “John Doe”.hashCode() mod 256 is 254.



Hash Collisions
• Uh Oh: Indices derived via hashing may not be unique!
"Jane Smith".hashCode() % 256 è 253
"Joe Schmoe".hashCode() % 256 è 253

• Good hashCode functions make it unlikely that two keys will 
produce the same hash

• But, it can still sometimes happen that two keys produce the 
same index – that is, their hashes collide



Bucketing and Collisions

“John Doe”

“Jimmy Bob”

“Jane Smith”

“Joan Jones”

000 null

001

002 null

003

… …

253

254

255 null

hashCode ArrayKeys Buckets of Bindings

Here, “Jane Smith”.hashCode() and “Joe Schmoe”.hashCode() happen to collide.  The 
bucket at the corresponding index of the Hash Map array stores the map data.

“John Doe”

“Jimmy Bob” CSCI

WUNG

“Jane Smith” DMD

“Joan Jones”

“Joe Shmoe” MATH

CBE

“Joe Schmoe”



Bucketing and Collisions
• Using an array of buckets

– Each bucket stores the mappings for keys that have the same hash.
– Each bucket is itself a map from keys to values (implemented by a 

linked list or binary search tree).
– The buckets can’t use hashing to index the values – instead they use 

key equality (via the key’s equals method)

• To look up a key in the Hash Map:
1. Find the right bucket by indexing the array through the key’s hash
2. Search linearly through the bucket contents to find the value 

associated with the key

• Not the only solution to the collision problem



Hashing and User-defined Classes
public class Point {

private final int x; 
private final int y;
public Point(int x, int y) { this.x = x; this.y = y; 

}
public int getX() { return x; }
public int getY() { return y; }

}

// somewhere else…
Map<Point,String> m = new HashMap<Point,String>();
m.put(new Point(1,2), "House");
System.out.println(m.containsKey(new Point(1,2)));

What gets printed to the console?

1. true
2. false
3. I have no idea

ANSWER: 2 – hashCode
not implemented



Why?  Because comparing
hashes is supposed to be
a quick approximation for
equality.

HashCode Requirements
Whenever you override equals you must also override hashCode in a 

consistent way:
– whenever o1.equals(o2) == true you must ensure that  

o1.hashCode() == o2.hashCode()

• Note: the converse does not have to hold:
– o1.hashcode() == o2.hashCode() 

does not necessarily mean that o1.equals(o2)
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Example for Point

• Examples: 
– (new Point(1,2)).hashCode()    yields  994
– (new Point(2,1)).hashCode()    yields 1024

• Note that equal points (in the sense of equals) have the same hashCode
• Why 31?  Prime chosen to create more uniform distribution
• Note: Tools (e.g. eclipse) can generate this code

public class Point {
@Override
public int hashCode() {

final int prime = 31;
int result = 1;
result = prime * result + x;
result = prime * result + y;
return result;

}
}



Recipe: Computing Hashes
• What is a good recipe for computing hash values for your own classes?

– intuition: “smear” the data throughout all the bits of the resulting

1. Start with some constant, arbitrary, non-zero int in result.
2. For each significant field f of the class (i.e. each field used when computing 

equals), compute a “sub” hash code c for the field:
– For boolean fields:  (f ? 1 : 0)
– For byte, char, int, short:  (int) f
– For long: (int) (f ^ (f >>> 32))
– For references: 0 if the reference is null, otherwise use the hashCode() of the 

field.

3.    Accumulate those subhashes into the result by doing (for each field’s c):
result = prime * result + c; 

4.   return result



Hash Map Performance
• Hash Maps can be used to efficiently implement Maps and Sets

– There are many different strategies for dealing with hash collisions with 
various time/space tradeoffs

– Real implementations also dynamically rescale the size of the array (which 
might require re-computing the bucket contents)

– See CIS 121 for more info!

• If the hashCode function gives a good (close to uniform) distribution of 
hashes, the buckets are expected to be small (only one or two elements)

• If the hashCode function gives a bad distribution (e.g. return 0;), the 
buckets will be large (and performance will be bad)

• Performance depends on workload



NOTE: Terminological Clash
• The word "hash" is also used in cryptography

– SHA-1, SHA-2, SHA-3, MD5, etc.

• All hash functions reduce large objects to short summaries
• Cryptographic hashes have some extra requirements:

– Are "one way" (i.e. very hard to invert)
– Should only very rarely have collisions
– Are considerably more expensive to compute 

than hashCode (so not suitable for hash tables)

• Never use hashCodewhen you need a cryptographic hash!
– See CIS 331 for more details
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Hashing: take away lessons

equals
hashCode

compareTo



Collections Requirements
• All collections invoke equals method on elements

– Defaults to ==  (reference equality)
– Override equals to create structural equality
– Should always be an equivalence relation: reflexive, symmetric, transitive

• HashSets/HashMaps also invoke hashCode method on elements
– Override when equals is overridden 
– Should be “compatible” with equals
– Should try to distribute hash codes uniformly
– Iterators are not guaranteed to follow order of hashCodes

• Ordered collections (TreeSet, TreeMap) require element type 
to implement Comparable interface  
– Provide compareTo method
– Should implement a total order
– Should be compatible with equals

• (i.e. o1.equals(o2) exactly when o1.compareTo(o2) == 0)
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Java 1.8 Functional Programming and 
Lambdas

or: How I Learned to Stop Worrying and Love 
Functional Programming in Java

(See PaintF.java)



Problem – Boilerplate Code in Java
• Using anonymous inner classes (Not great, but better than 

named classes)

• Using Lambdas (Much better!)

quit.addActionListener(e ->
System.exit(0)

);

quit.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

System.exit(0);
}

});



Lambdas – Why and What?
• Often implementation of anonymous classes is simple 

– e.g., an interface that contains only one method

• Lambda* expressions:
– treat functionality as method argument, or code as data.
– Java's version of first-class functions

• Pass functionality as an argument to another method, 
– e.g., what action should be taken when someone clicks a button. 

• Any interface that has exactly one method can be 
implemented via a "lambda" (anonymous function).
– method "name" implicitly determined by the type at which the 

lambda is used
– https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressio

ns.html

*The term "lambda" comes from the lambda calculus, which was introduced by Alonzo Church in the 1930s.  The 
lambda calculus forms the theoretical basis  of all functional programming languages.

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html


Lambdas – Why and What?
• Helps create instances of single-method classes more easily
• Think of them as anonymous methods

thick.addItemListener(e -> {
if (e.getStateChange() == ItemEvent.SELECTED) {

stroke = thickStroke;
} else {

stroke = thinStroke;
});

SwingUtilities.invokeLater(() -> new PaintF());

Method Argument(s)



Java Lambda In A Nutshell

x -> x + x

(x,y) -> x.m(y)

(x,y) -> {
System.out.println(x);
System.out.println(y);

}

int method1(int x) {
return x + x;

}

int method2(A x, B y) {
return x.m(y);

}

void method3(String x,
String y) {

System.out.println(x);
System.out.println(y);

}
CIS120

Lambda Notation "Ordinary" Java Notation

Method names and types
are inferred from the context.



Functional Programming + Streams

(See Streams.java)



I/O Streams
• The stream abstraction represents a communication channel 

with the outside world.
– can be used to read or write a potentially unbounded number of data 

items (unlike a list)
– data items are read from or written to a stream one at a time 

• The Java I/O library uses subtyping to provide a unified view 
of disparate data sources and sinks.



Streams redux
• Use streams of elements to support functional-style 

operations on collections
• Key differences between streams and collections:

– No storage (i.e., not a data structure)
– Functional in nature (i.e., do not modify the source)
– Possibly unbounded (i.e., computations on infinite streams can 

complete in finite time)
– Consumable (i.e., similar to Iterator)
– Laziness-seeking

• “Find the first input String that begins with a vowel” doesn’t need 
to look at all Strings from the input



Creating Streams (1)
• From a Collection via 

the stream() and parallelStream() methods
• From an array via Arrays.stream()

• The lines of a file can be obtained 
from BufferedReader.lines()

• Streams of random numbers can be obtained 
from Random.ints();

• Numerous other stream-bearing methods in the JDK



Creating Streams (2)
• Can create your own Low-Level Stream
• Similar to having a custom class like WordScanner that 

implements Iterator

• Spliterator – parallel analogue to Iterator
– (Possibly infinite) Collection of elements
– Support for:

• Sequentially advancing elements (similar to next())
• Bulk Traversal (performs the given action for each remaining 

element, sequentially in the current thread)
• Splitting off some portion of the input into another spliterator, 

which can be processed in parallel (much easier than doing 
threads manually!)



Stream Pipeline Operations
• Intermediate (Stream-producing) operations

– E.g., filter, map, sorted
– Similar to transform in Ocaml
– Return a new  stream
– Always lazy (produce elements as needed, not ahead of time)
– Traversal of the source does not begin until the terminal 

operation of the pipeline is executed
• Terminal (value- or side-effect-producing) operations

– E.g.  forEach, reduce, findFirst, allMatch, max, min
– Similar to fold in Ocaml
– Produce a result or side-effect

• Combined to create Stream pipelines



Lambdas, Streams, Pipelines
• Beauty and Joy of functional programming, now in Java!

roster.stream()
.filter(p -> 

p.getGender() == Person.Sex.MALE
&& p.getAge() >= 18
&& p.getAge() <= 25)

.map(p -> p.getEmailAddress())

.forEach(email -> System.out.println(email));

int sum = widgets.stream()
.filter(b -> b.getColor() == RED)
.mapToInt(b -> b.getWeight())
.sum();



Functional Programming + Parallelism

(See Streams.java)



Functional Programming + Parallelism
• Parallelism by design in Java 1.8

– Streams are functional in nature (i.e., do not modify the source)
– Spliterator

• Much easier than doing it manually
– No need for synchronized
– No need for locks
– Don’t have to worry about race conditions!

• Use parallelStream() (instead of stream())!
– Java will automatically create the necessary threads and scale 

based on your computer’s hardware



Sample Problem
• Given a list of numbers, find the sum of the squares of the 

numbers

• Iterative Approach

• Works, more likely to have bugs (off-by-one), harder to 
parallelize

int sum = 0;
for (int i = 0; i < list.size(); i++) {

sum += list.get(i);
}



Sample Problem
• Given a list of numbers, find the sum of the squares of the 

numbers

• Functional Approach
• Use transform and fold (aka map and reduce in Java)

• Less likely to have bugs, much easier to parallelize

list.parallelStream()
.map(x -> x * x)
.reduce(0, Integer::sum);



Garbage Collection 
& Memory Management

Cleaning up the Heap



Memory Management
• The Java Abstract Machine stores all objects in the heap.

– We imagine that the heap has limitless space…
… but: real machines have limited amounts of memory

• Manual memory management
– C and C++
– The programmer explicitly allocates heap objects (malloc / new)
– The programmer explicitly de-allocates the objects (free / delete)

• Automatic memory management (garbage collection)
– Reference Counting: Objective C, Swift, Python, many scripting 

languages
– Mark & sweep/Copying GC: Java, OCaml, C#, Haskell (and most other 

‘managed’ languages) 
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Manual Memory Management 

See manmem.c



Why Garbage Collection?
• Manual memory management is cumbersome & error prone:

– Freeing the same reference twice is ill defined (crashes or other bugs)
– Explicit free isn’t modular: To properly free all allocated memory, the 

programmer has to know what code “owns” each object.  Owner code 
must ensure free is called just once.

– Not calling free leads to space leaks: memory never reclaimed
• Many examples of space leaks in long-running programs 

• Garbage collection:
– Have the language runtime system determine when an allocated 

chunk of memory will no longer be used and free it automatically.
– Extremely convenient and safe
– Garbage collection does impose costs (performance, predictability)
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Graph of Objects in the Heap
• References in the stack and global static fields are roots

CIS120

Stack Heap

UNREACHABLE!!!!



Reference Counting



Reference Counting
• Each heap object tracks how many references point to it:

CIS120

Stack Heap

1 2 1 1

1

2 2 1 0



Reference Counting
• When reference count goes to 0, reclaim that space 

– and decrement counts for objects pointed to by that object
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Stack Heap

1 2 1 1

1

2 2 1 00



Reference Counting
• When reference count goes to 0, reclaim that space 

– and decrement counts for objects pointed to by that object

CIS120

Stack Heap

1 2 1 1

1

2 2 01



Problem: Cyclic Data
• Cycles of data will never decrement to 0!  

– Can lead to "space leaks"
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Stack Heap

1 2 1 1

1

2 1



Dealing with Cycles
• Option 1:  Require programmers to explicitly null-out 

references to break cycles.

• Option 2: Periodically run mark & sweep GC to collect cycles

• Option 3: Require programmers to distinguish “weak 
pointers” from “strong pointers”
– weak pointers: if all references to an object are “weak” then the object 

can be freed even with non-zero reference count.
– “Back edges” in the object graph should be designated as weak
– (Aside: weak pointers useful in GC settings too.)
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Mark & Sweep / Copying

Traverse the Heap



Memory Use & Reachability
• When is a chunk of memory no longer needed?

– In general, this problem is undecidable.

• We can approximate this information by freeing memory that 
can’t be reached from any root references.
– A root reference is one that might be accessible directly from the 

program (i.e. they’re not in the heap).  
– Root references include (global) static fields and references in the 

stack.

• If an object can be reached by traversing pointers from a root, 
it is live.

• It is safe to reclaim all heap allocations not reachable from a 
root (such objects are garbage or dead objects).

CIS120



Mark and Sweep Garbage Collection
• Classic algorithm with two phases:
• Phase 1: Mark

– Start from the roots
– Do depth-first traversal, marking every object reached.

• Phase 2: Sweep
– Walk over all allocated objects and check for marks.
– Unmarked objects are reclaimed.
– Marked objects have their marks cleared.
– Optional: compact all live objects in heap by moving them adjacent to 

one another. (Needs extra work & indirection to “patch up” 
references)

• (In practice much more complex: "generational GC")
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Results of Marking Graph
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Unreachable 
blocks are 
garbage

Stack Heap

Reachable 
blocks are kept



Second Phase: Drop "Unreachable"
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Stack Heap

• Sweep over all objects, dropping the ones marked as 
unreachable and keeping the ones marked reachable.

✓ ✓

✓ ✓



Costs & Implications
• Need to generalize to account for objects that have multiple 

outgoing pointers.
• Mark & Sweep algorithm reads all memory in use by the 

program (even if it’s garbage!)
– Running time is proportional to the total amount of allocated memory 

(both live and garbage).
– Can pause the programs for long times during garbage collection.
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Copying Garbage Collection
• Like mark & sweep: collects all garbage.
• Basic idea: use two regions of memory

– One region is the memory in use by the program.  New allocation 
happens in this region.

– Other region is idle until the GC requires it. 

• Garbage collection algorithm:
– Traverse over live objects in the active region (called the “from-

space”), copying them to the idle region (called the “to-space”). 
– After copying all reachable data, switch the roles of the from-space 

and to-space.
– All dead objects in the (old) from-space are discarded en masse.
– A side effect of copying is that all live objects are compacted together.
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Copy from "From" to "To"
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Stack Heap

From Space

To Space



Discard the "From Space"
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Stack Heap To Space



GCDemo

See GCTest.java



Garbage Collection Take Aways
• Big idea: the Java runtime system tries to free-up as much memory 

as it can automatically.
– Almost always a big win, in terms of convenience and reliability

• Sometimes can affect performance:
– Lots of dead objects might take a long time to collect
– When garbage collection will be triggered can be hard to predict, so there 

can be “pauses” (modern GC implementations try to avoid this!)
– Global data structures can have references to “zombie” objects that won’t 

be used, but are still reachable ⇒ “space leak”.

• There are many advanced programming techniques to address 
these issues:
– Configuring the GC parameters
– Explicitly triggering a GC phase
– “Weak” references
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