
Programming Languages
and Techniques

(CIS120)

Lecture 39

Semester Recap

CIS 120 Recap

From Day 1
• CIS 120 is a course in program design
• Practical skills:

– ability to write larger (~1000 lines)
programs

– increased independence
("working without a recipe")

– test-driven development, principled
debugging

• Conceptual foundations:
– common data structures and algorithms
– several different programming idioms
– focus on modularity and

compositionality
– derived from first principles throughout

• It will be fun!

Promise: A challenging
but rewarding course.

Which assignment was the most challenging?

1. OCaml finger exercises
2. DNA
3. Sets and Maps
4. Queues
5. GUI
6. Images
7. Chat
8. Game

Which assignment was the most rewarding?

1. OCaml finger exercises
2. DNA
3. Sets and Maps
4. Queues
5. GUI
6. Images
7. Chat
8. Game

CIS 120 Concepts

13 concepts in 35 lectures

Concept: Design Recipe

1. Understand the problem
What are the relevant concepts and how do they relate?

2. Formalize the interface
How should the program interact with its environment?

3. Write test cases
How does the program behave on typical inputs? On unusual

ones? On erroneous ones?
4. Implement the required behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

"Solving problems", wrote Polya, "is a practical art, like
swimming, or skiing, or playing the piano: You can learn it
only by imitation and practice."

Interface vs. Implementation
• Concept: Type abstraction hides the actual

implementation of a data structure, describes a
data structure by its interface (what it does vs.
how it is represented), supports reasoning with
invariants

• Examples: Set/Map interface, queues in OCaml
and Java, encapsulation and access control

• Why?
– Flexibility: Can change the implementation without

modifying clients
– Correctness: Can preserve invariants about the

implementation

Invariants are a crucial tool for
reasoning about data structures:

1. Establish the invariants when
you create the structure.

2. Preserve the invariants when
you modify the structure.

1

3

0

abstract view

1

0 3

< >

concrete representation

BST:

Testing
• Concept: Write tests before coding

– "test first" methodology

• Examples:
– Simple assertions for declarative

programs (or subprograms)
– Longer (and more) tests for stateful

programs / subprograms
– Informal tests for GUIs

(can be automated through tools)

• Why?
– Tests clarify the specification of the problem
– Helps you understand the invariants
– Thinking about tests informs the implementation
– Tests help with extending and refactoring code later
– Industry practice; useful for coordinating teams

Functional/Procedural Abstraction
• Concept: Don't Repeat Yourself!

– generalize code so it can be reused
in multiple situations

• Examples: Functions/methods,
generics, higher-order functions,
interfaces, subtyping, abstract classes

• Why?
– Duplicated functionality = duplicated bugs
– Duplicated functionality = more bugs waiting to happen
– Good abstractions make code easier to read, modify, maintain

Persistent data structures
• Concept: Store data in persistent, immutable structures;

implement computation as transformations of those
structures

• Examples: immutable lists and trees in OCaml (HW 1/2/3),
images, Strings, Streams in Java

• Why?
– Simple model of computation, similar to mathematics
– Simple interface: Don't have to reason about aliasing (no implicit

communication between various parts of the program, all interfaces
are explicit)

– Recursion amenable to mathematical analysis (CIS 160/121)
– Plays well with parallelism

Recursion is the natural way of
computing a function f(t) when t
belongs to an inductive data type:

1. Determine the value of f for
the base case(s).

2. Compute f for larger cases by
combining the results of
recursively calling f on smaller
cases.

3. Same idea as mathematical
induction (a la CIS 160)

Concept: Tree Structured data
• Lists (i.e. “unary” trees)
• Simple binary trees
• Trees with invariants: e.g. binary

search trees
• Widget trees: screen layout +

event routing
• Swing components

• Why? Trees are ubiquitous in
CS!
– file system organization
– languages, compilers
– domain name hierarchy www.google.com

let rec length (l:int list) : int =
begin match l with
| [] -> 0
| _::tl -> 1 + length(tl)

end

http://www.google.com

First-class computation
• Concept: code is a form of data that can be defined by

functions, methods, or objects (including anonymous ones),
stored in data structures, and passed to other functions

• Examples: map, filter, fold (HW4), pixel transformers (HW6),
event listeners (HW5, 8)

• Why?
– Powerful tool for abstraction: can factor out design patterns that differ

only in certain computations

cell.addMouseListener(new MouseAdapter() {
public void mouseClicked(MouseEvent e) {

selectCell(cell);
}

});

cell.addMouseListener(e -> {
selectCell(cell);

});

Types, Generics, and Subtyping
• Concept: Static type systems prevent many errors. Every

expression has a static type, and OCaml/Java use the types to
rule out buggy programs. Generics and subtyping make types
more flexible and allow for better code reuse.

• Why?
– Easier to fix problems indicated by a type error than to write a test

case and then figure out why the test case fails
– Promotes refactoring: type checking ensures that basic invariants

about the program are maintained

let rec contains (x:’a) (l:’a list) : bool =
begin match l with

| [] -> false
| h::tl -> x = a || (contains x tl)

end

Mutable data
• Concept: Some data structures are ephemeral: computations

mutate them over time

• Examples: queues, deques (HW4), Paint state (HW5),
arrays (HW 6), dictionaries (HW7), game state (HW 8)

• Why?
– Common in OO programming, which simulates the transformations that

objects undergo when interacting with their environment
– Heavily used for event-based programming, where different parts of the

application communicate via shared state
– Default style for Java libraries (collections, etc.)

Sequences, Sets, Maps
• Concept: Specific collection types: sequences, sets, and finite

maps
• Examples: HW3, Java Collections, HW 7, 8
• Why?

– These abstract data types come up again and again
– Need aggregate data structures (collections) no matter what language

you are programming in
– Need to be able to choose the data structure with the right semantics

filter map
(transform)

fold
(reduce)

Lists, Trees, BSTs, and Arrays
• Concept: There are implementation trade-offs for abstract types
• Examples:

– Binary Search Trees vs. Linked lists vs. Hashing for sets and maps
– Linked lists vs. Arrays for sequential data

• Why?
– Abstract types have multiple implementations
– Different implementations have different trade-offs. Need to understand

these trade-offs to use them well.
– For example: BSTs use their invariants to speed up lookup operations

compared to linked lists.

interface Queue {boolean isEmpty(); …}

Abstract Stack Machine
• Concept: The Abstract Stack Machine is a detailed model of

how programs execute in OCaml/Java

Abstract Stack Machine
• Concept: The Abstract Stack Machine is a detailed model of

how programs execute in OCaml/Java

• Example: Many, throughout the semester!

• Why?
– To know what your program does without running it
– To understand tricky features of Java/OCaml language (aliasing, first-

class functions, exceptions, dynamic dispatch)
– To help understand the programming models of other languages:

Javascript, Python, C++, C#, …
– To help predict performance and space usage

Event-Driven programming
• Concept: Structure a program by associating "handlers" that

react to events. Handlers typically interact with the rest of the
program by modifying shared state.

• Examples: GUI programming in OCaml and Java

• Why?
– Practice with reasoning about

shared state
– Practice with first-class functions
– Basis for programming with

Swing
– Common in all GUI applications

Why OCaml?

Why some other language than Java?
• Level playing field for students with varying backgrounds

coming into the same class
• Two points of comparison — allows us to emphasize

language-independent concepts
• Learn concepts that generalize across languages

…but why specifically OCaml?

Rich vocabulary / Clean semantics
• In Java: int, A[], Object, Interfaces
• In OCaml:

– primitives
– arrays
– objects
– datatypes (including lists, trees, and options)
– records
– refs
– first-class functions
– abstract types

• All of the above can be implemented in
Java, but untangling various use cases of
objects is subtle

• Concepts like generics can be studied in
isolation in OCaml, with fewer intricate
interactions with the rest of the language

Why Java?

Object Oriented Programming
• A different way of decomposing / structuring

programs
• Basic principles:
– Encapsulation of local, mutable state
– Inheritance to share code
– Dynamic dispatch to select which code gets run

• but why specifically Java?

Important Ecosystem
• Canonical example of OO language design
• Widely used: Desktop / Server / Android / etc.
• Industrial strength tools

– Eclipse
– JUnit testing framework
– Profilers, debuggers, …

• Libraries:
– Collections / I/O libraries/ Swing
– …

• In-demand
job skill

IEEE Spectrum Rank

Onward…

What Next?
• Classes:

– CIS 121, 262, 320 – data structures, performance, computational
complexity

– CIS 19x – programming languages
• Python, Haskell, Ruby on Rails, iPhone programming, Android, Javascript,

Rust
– CIS 240 – lower-level: hardware, gates, assembly, C programming
– CIS 341 – compilers (projects in OCaml)
– CIS 371, 380 – hardware and OS’s
– CIS 552 – advanced functional programming in Haskell
– And many more!

The Craft of Programming
• The Pragmatic Programmer:

From Journeyman to Master
by Andrew Hunt and David Thomas
– Not about a particular programming language,

it covers style, effective use of tools, and
good practices for developing programs.

• Effective Java
by Joshua Bloch

– Technical advice and wisdom about using Java for
building software. The views we have espoused in
this course share much of the same design
philosophy.

Functional Programming
• Real World OCaml

by Yaron Minsky, Anil Madhavpeddy,
and Jason Hickey
– Using OCaml in practice: learn how to leverage

its rich types, module system, libraries, and
tools to build reliable, efficient software.

– https://realworldocaml.org/

• Explore related Languages:

F#

https://realworldocaml.org/

Conferences / Videos / Blogs
• curry-on.org
• cufp.org Commercial Users of Functional

Programming
– See e.g. Manuel Chakravarty's talk

"A Type is Worth a Thousand Tests"

• Yaron Minsky's Jane Street Tech Blog
– Ocaml in practice

• PHASE – Philly Area Scala Enthusiasts

• Join us! Penn's PL Club plclub.org

Ways to get Involved

Undergraduate
Research

Become a TA! plclub.org

Parting Thoughts
• Improve CIS 120

– End-of-term survey will be sent soon
– Penn Course evaluations also provide useful feedback
– We take them seriously: please complete them!

Thanks!
let rec length (l:int list) : int =
begin match l with
| [] -> 0
| _::tl -> 1 + length(tl)

end

Thanks!

