
CIS 120 Final Exam December 17, 2021

Name (printed):

Pennkey (letters, not numbers):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Aca-
demic Integrity in completing this examination.

Signature: Date:

• Please wait to begin the exam until you are told it is time for everyone to start.

• There are 120 total points. The exam period is 120 minutes long.

• Please skim the entire exam first—some of the questions will take signifi-
cantly longer than others.

• There are 15 pages in this exam.

• There is a separate appendix for reference. Answers written in the appendix
will not be graded.

• Good luck!

1



1. Java Concepts (10 points)

Recall that, in Java, a class may implement several interfaces but may extend only one parent class. Suppose
that we were to change Java so that a class can extend two or more classes. Then the following declaration
would be allowed, which means that classes D and E are both parents of C in the class hierarchy:

class C extends D, E implements I {
/* C’s fields and methods */

}

(a) Briefly describe one benefit for structuring software that would be allowed by this change, and give an
example use case. Be specific.

(b) Briefly describe one problem that this change would cause, and give an example. Be specific.

2



2. OCaml and Java Concepts (10 points) (1 point each) Indicate whether the following statements are
true or false.

a. True False
In OCaml, the intended behavior of an abstract type is defined by its interface, its properties, and its
implementation.

b. True False
In OCaml, it is possible to use the sequencing operator ; to execute multiple expressions and have
multiple side-effects.

c. True False
In the OCaml ASM, stack bindings are immutable by default whereas in the Java ASM, they are
mutable by default.

d. True False
In the OCaml ASM, a closure stores the required stack bindings on the heap with the function body.

e. True False
In our OCaml GUI libraries, it is not possible for container widgets (like hpair) to handle events.

f. True False
In the Java ASM, static variables are stored on the stack.

g. True False
In Java, dynamic dispatch of a method invocation is guaranteed to find an appropriate method body in
the class table, if the code successfully compiled.

h. True False
In Java, it is possible to have multiple catch blocks, but it is possible that the order in which the blocks
are written causes a compile-time error.

i. True False
In Java, the length of an array is immutable.

j. True False
In Java, the static type must be a subtype of the dynamic class of an object.

3



3. OCaml Higher Order Functions, Queues, and ASM (28 points total)

Recall the definition of singly-linked queues and their invariants from Homework 4. These are available
in Appendix A.

Consider the Stack and Heap for the ASM shown below.

(a) (2 points) Does the queue q1 satisfy the queue invariants?
Yes No

(b) (2 points) Does the queue q2 satisfy the queue invariants?
Yes No

Next, we’ll create a modified version of the higher order function transform (from Homework 3 and
4) that works on queues. The code is shown below:

let rec transform_queue (f: ’a qnode -> unit) (q: ’a queue) : unit =
let rec loop (no: ’a qnode option) : unit =
begin match no with
| None -> ()
| Some n -> let next = n.next in

f n;
loop next

end
in loop q.head

(c) (2 points) Is the transform_queue function tail recursive?
Yes No

(d) (4 points) Assuming that f can only access its input argument (and nothing else on the stack or heap),
does the transform_queue function always preserve the queue invariants?

Yes No
Explain why:

4



(e) (8 points) Consider the mystery function and the queue q as shown below.
let mystery (no: ’a qnode) : unit =
if no.next <> None then

let new_node = {v = no.v; next = no.next} in
no.next <- Some new_node

Next, we perform the function call transform_queue mystery q.

Draw the ASM stack and heap after the function call is completed. For the purposes of this question,
you can ignore everything on the Stack and Heap, other than what is part of the queue q.
(Note that <> is structural inequality in OCaml.)

If you’re taking the exam remotely and don’t have access to a writing device, please describe clearly
and unambiguously what the ASM will look like in the box below.

5



Finally, we’ll create a modified version of the higher order function fold (from Homework 3 and 4)
that works on queues. The code is shown below:

let rec fold_queue (combine: ’a -> ’b -> ’b) (base: ’b) (q: ’a queue) : ’b =
let rec loop (no: ’a qnode option) : ’b =
begin match no with
| None -> base
| Some n -> combine n.v (loop n.next)
end

in loop q.head

(f) (2 points) Is the fold_queue function tail recursive?
Yes No

(g) (4 points) Assuming that combine can only access its input arguments (and nothing else on the stack
or heap), does the fold_queue function always preserve the queue invariants?

Yes No
Explain why:

(h) (4 points) Consider the function call fold_queue (fun hd acc -> hd * acc) 1 q where the queue
q is shown below.

What will be the result of the above function call? (1–2 sentences will be sufficient here.)

6



4. Java SubTyping, Inheritance, and Exceptions (29 points)

This problem refers to two interfaces and several classes that might be part of a program for working
with the Library book series by Genevieve Cogman. You can find them in Appendix B.

(a) (2.5 points) Which of the following classes are an example of simple inheritance in Java (either explic-
itly or implicitly)? (Mark all that apply.)

Librarian Fae Dragon LiteraryDetective SubTyping

(b) (2.5 points) Which lines of code are example uses of subtype polymorphism in Java? (Mark all that
apply.)

Line 65 Line 66 Line 68 Line 69 Line 71

(c) (2.5 points) Which lines of code are example uses of parametric polymorphism (i.e., generics) in Java?
(Mark all that apply.)

Line 65 Line 66 Line 68 Line 69 Line 71

(d) (3.5 points)

_______ vale = new LiteraryDetective();

Which types (there may be one or more) can be correctly used for the declaration of vale above?
Human TravelsBetweenWorlds Librarian Fae

Dragon LiteraryDetective Object

Which of the following lines is legal Java code that will not cause any compile-time (i.e. type check-
ing) or run-time errors?

If it is legal code, check the “Legal Code” box and answer the questions that follow it. If it is not legal,
check one of the “Not Legal” options and explain why.
You can assume each option below is independent and written after line 71 in the main method (as
shown in the Appendix).

(e) (3 points)

TravelsBetweenWorlds lordSilver = new Fae();

Legal Code

A. The static type of lordSilver is .

B. The dynamic class of lordSilver is .
Not Legal — Will compile, but will throw an Exception when run
Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

7



(f) (3 points)

Fae vale = new LiteraryDetective();
printName(vale);

Legal Code
The code above will print (Choose all that apply.)

“Vale (aka Sherlock Holmes)”
“This method is abstract and not implemented yet.”

Not Legal — Will compile, but will throw an Exception when run
Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

(g) (3 points)

Fae vale = new LiteraryDetective();
System.out.println(vale.travel());

Legal Code
The code above will print (Choose all that apply.)

“I need to create a portal using a book”
“Only powerful Fae can travel between worlds”
“I can carry a Fae or a Librarian with me”
“I am Vale (aka Sherlock Holmes), but I need a Librarian to help”

Not Legal — Will compile, but will throw an Exception when run
Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

(h) (3 points)

travellers.add(princeKai);
System.out.println(travellers.contains(princeKai));

Legal Code
The code above will print (Choose all that apply.)

true

false

Not Legal — Will compile, but will throw an Exception when run
Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

8



For the following two parts, we have created two new Exception classes:
FaeTriedToEnterLibraryException that is a subtype of Exception, but not RuntimeException.
LiteraryDetectiveFoundAFaeNemesisException that is a subtype of RuntimeException.
(Note that a instanceof b checks whether a’s dynamic class is a subtype of b.)

(i) (3 points)
public void travelToLibrary(TravelsBetweenWorlds t) {

if (t instanceof Fae) {
throw new FaeTriedToEnterLibraryException();

} else {
System.out.println(t.travel());

}
}
// somewhere else
travelToLibrary(new Dragon());

Legal Code
The code above will print (Choose all that apply.)

“Only powerful Fae can travel between worlds”
“I can carry a Fae or a Librarian with me”
“I am Vale (aka Sherlock Holmes), but I need a Librarian to help”
It will print something other than the options shown above.

Not Legal — Will compile, but will throw an Exception when run
Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

(j) (3 points)
public void nemesis(LiteraryDetective detective, TravelsBetweenWorlds t) {

if (t instanceof Fae) {
throw new LiteraryDetectiveFoundAFaeNemesisException();

} else {
System.out.println(detective.getName() + " found a nemesis");

}
}
// somewhere else
nemesis(new LiteraryDetective(), new Fae());

Legal Code
The code above will print (Choose all that apply.)

“Vale (aka Sherlock Holmes) found a nemesis”
“Irene found a nemesis”
It will print something other than the options shown above.

Not Legal — Will compile, but will throw an Exception when run
Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

9



5. Java Programming (33 points total)

When working with sets of data, one frequently useful operation is the ability to “group” subsets of the
data that are related in some way. For example, if we have a set of CIS 120 students, we might want to
group them by which recitation sections they are in. Or we might want to take a set of Strings and group
them by their lengths. In this problem we will add a method groupBy to Java’s Set collection functionality
by implementing a class called GroupableSet. Appendix E contains the relevant part of the Java Docs for
the interfaces we will need.

Step 1: Understand the problem: (6 points) As an example, suppose we have the set of strings shown
below (written informally, not using Java notation):

GroupableSet<String> set1 = {"ddd", "a", "bb", "cc" , "eee"}

We want set1.groupBy(classifier) to produce the following Map, whose integer keys are the string
lengths found in set1. Each key’s value is a Set containing the subset of set1 of strings of that length:

set1.groupBy(classifier) =
key value
1 -> {"a"} // group of length 1 strings
2 -> {"bb", "cc"} // group of length 2 strings
3 -> {"ddd", "eee"} // group of length 3 strings

For simplicity, we will assume that each “group” is identified by an Integer and that groupBy takes an input,
called classifier, which determines to which group each element of the set belongs. This classifier is
an object that provides an apply method taking an element returning an Integer for that element’s group.
For the example above, classifier.apply(s) = s.length(), where s is a String.

(a) Suppose that we add the empty String "" to the GroupableSet set1 mentioned above. What would
be the key for "" in the resulting map after grouping by length? (Choose one.)

null 0 1 2 there is no such key
(b) Suppose we create a different classifier2 object such that classifier2.apply(s) = 2. Which of

the following are true statements about the map resulting from calling set.groupBy(classifier2),
i.e., we use this new classifier on the same set1 from above? (Mark all that apply.)

The map will contain the key 1

The map will contain the key 2

The map will contain the key 3

All of the elements will be in one group.
There will be one element in each group.

(c) Suppose we create a GroupableSet<Integer> set3 with elements {0, 1, 2, 3, 4, 5} and we cre-
ate a classifier3 such that classifier3.apply(x) = x. Which of the following are true statements
about the map resulting from calling set3.groupBy(classifier3)? (Mark all that apply.)

The map will contain the key 1

The map will contain the key 2

The map will contain the key 3

All of the elements will be in one group.
There will be one element in each group.

10



Step 2: Design the interface (11 points)

We will implement a class called GroupableSet<E> that implements the Set<E> interface and, additionally,
provides the groupBy method. Note (from the Java Docs in Appendix E) that the Function<T,R> interface
indicates an object that has an R apply(T t) method. Based on the desired behavior above, the type of the
groupBy method we use is as follows:

Map<Integer,Set<E>> groupBy(Function<E,Integer> classifier)

(d) The type of the groupBy method is an example of parametric polymorphism (a.k.a. a generic type).
True False

Now consider the example uses of groupBy given by the classes MainA, MainB, MainC, and MainD as shown
in Appendix C. Answer each question below. If the answer is “false” give a brief explanation.

(e) The code in MainA is well typed. (Has no compile-time errors.)
True

False because

(f) The code in MainB is well typed. (Has no compile-time errors.)
True

False because

(g) The code in MainC is well typed. (Has no compile-time errors.)
True

False because

(h) The code in MainD is well typed. (Has no compile-time errors.)
True

False because

(i) Which classes exhibit the use of anonymous inner classes? (Mark all that apply.)
MainA MainB MainC MainD

11



Step 3: Write test cases (6 points)

Recall that, when testing a method like groupBy, it is often helpful to think about the properties that
we expect to hold, especially in relation to other operations. Such properties can usually be turned into test
cases.

Assume the following:

• set is an object of type GroupableSet<String>

• classifier is an object of type Function<String,Integer>

• map is an object of type Map<Integer,Set<String>> returned by set.groupBy(classifier)

• k, k1, and k2 are int values (which can be used implicitly as Integer objects)

• None of the objects are null and none of the methods raise exceptions. (We would write other kinds
of test cases for those situations.)

Each of the following properties relates groupBy to the Set<E>, Map<Integer,Set<E>>, and
Function<E,Integer> interface operations. Choose one option for each blank to make the property a
correct description of the intended behavior of groupBy.

(j) For every o, if then there is some k such that k == classifier.apply(o) and
map.get(k).contains(o).

!map.containsKey(k)

map.containsKey(k)

!set.contains(o)

set.contains(o)

(k) For every o and k, if then set.contains(o).

!map.get(k).contains(o)

map.get(k).contains(o)

!map.containsKey(k)

map.containsKey(k)

(l) For every o, k1, and k2, if map.get(k1).contains(o) and map.get(k2).contains(o)

then .

k1 == k2 and k1 == classifier.apply(o)

k1 != k2 and k1 == classifier.apply(o)

k1 == k2 and k1 != classifier.apply(o)

k1 != k2 and k1 != classifier.apply(o)

12



Step 4: Implement the code (10 points)

We want every GroupableSet<E> object to be an instance of Set<E>, but we don’t want to have to re-
implement all of the Set interface operations to achieve that. Recall that an adapter class provides default
implementations of a given interface. Appendix D gives an appropriate SetAdapter<E> implementation of
the Set<E> interface that we will use below as the basis for GroupableSet. Note that it contains the private
field set.

Now complete the implementation of the groupBy method. You will need to create new Set and Map

objects—we have imported the TreeSet and TreeMap classes for you.

import java.util.Map;
import java.util.Set;
import java.util.TreeMap;
import java.util.TreeSet;
import java.util.function.Function;

public class GroupableSet<E> extends SetAdapter<E> implements Set<E> {

public GroupableSet(Set<E> set) {
super(set);

}

/ * TODO: Comple te t h i s method * /
public Map<Integer,Set<E>> groupBy(Function<E,Integer> classifier) {

}
}

13



6. Java Swing Programming (10 points)

The code in Appendix F implements a simple Java GUI program in which a 50x50 black box follows
the mouse cursor around the window. It looks like this (the mouse cursor is not shown):

The following true/false questions concern this application and Java Swing programming in general.

a. True False
The type MyPanel is a subtype of Object.

b. True False
Lines 5–9 create a new object whose static type and dynamic class are, both, Runnable.

c. True False
If we changed line 27 from addMouseMotionListener to addMouseListener then the black box would
not follow the mouse cursor.

d. True False
If we changed line 27 from new MouseAdapter to new MouseMotionListener, the code would still
compile.

e. True False
The instance variables x and y, declared on lines 23 and 24, can be declared as final.

f. True False
There are two @Override annotations in the code. If we removed them, the code would still compile.

g. True False
The mouseMoved method on line 28 is called by the Swing event loop in reaction to the user moving
the mouse in the main window of the application.

14



h. True False
The paintComponent method on line 42 is only invoked once, at the start of the application.

i. True False
The anonymous inner class defined on line 27 implements or inherits all members of the
MouseMotionListener interface.

j. True False
The GUI class and the createAndShowGUI() method share the same stack and heap in the Java ASM.

15


