CIS 120 Final Exam December 17, 2021

SOLUTIONS

1. Java Concepts (10 points)

Recall that, in Java, a class may implement several interfaces but may extend only one parent class. Suppose
that we were to change Java so that a class can extend two or more classes. Then the following declaration
would be allowed, which means that classes b and E are both parents of c in the class hierarchy:

class C extends D, E implements I {
/+ C’s fields and methods x*/
}

(a) Briefly describe one benefit for structuring software that would be allowed by this change, and give an
example use case. Be specific.
Answer: Since this feature would allow a class ¢ to inherit method implementations from both b and E,
we could have a class color with methods for getting and setting color values, and a class ShapeImpl
that implements basic shape methods (size, position, etc.). We could then implement a Coloredshape
by extending Color and ShapeImpl.

Grading Rubric
* 2 points - for mentioning that the two parent classes could implement distinct methods
* 2 points - for giving an example (that is at least slightly plausible and specific)

(b) Briefly describe one problem that this change would cause, and give an example. Be specific.

Answer: This feature causes a problem if both p and £ implement the same method m () that is required
by the interface 1. Then code like the following would lead to ambiguity in the dynamic dispatch search for
which m method to use:

static void method (I obj) {
obj.m(); /+ This method dispatch is ambiguous x/

}

/+ somewhere in main() */
method (new C());

Note: this is called the “diamond import problem” and is a classic issue with “multiple inheritance”.

Grading Rubric

* 2 points - for observing that the problem arises if the two parent classes implement the same method
or public fields in incompatible ways

* 2 points - for saying that it causes ambiguity in dynamic dispatch or field lookup

* 2 points - for giving an example that demonstrates the ambiguity (via a method call)

2. OCaml and Java Concepts (20 points) (2 points each) Indicate whether the following statements are
true or false.

a.

True O False X

In OCaml, the intended behavior of an abstract type is defined by its interface, its properties, and its
implementation.

True X False OJ

In OCaml, it is possible to use the sequencing operator ; to execute multiple expressions and have
multiple side-effects.

True X False

In the OCaml ASM, stack bindings are immutable by default whereas in the Java ASM, they are
mutable by default.

. True X False O

In the OCaml ASM, a closure stores the required stack bindings on the heap with the function body.

. True O False X

In our OCaml GUI libraries, it is not possible for container widgets (like hpair) to handle events.

True O False X
In the Java ASM, static variables are stored on the stack.

True X False O

In Java, dynamic dispatch of a method invocation is guaranteed to find an appropriate method body in
the class table, if the code successfully compiled.

. True X False O

In Java, it is possible to have multiple catch blocks, but it is possible that the order in which the blocks
are written causes a compile-time error.

True X False U
In Java, the 1ength of an array is immutable.

True O False X

In Java, the static type must be a subtype of the dynamic class of an object.

PennKey: 3

3. OCaml Higher Order Functions, Queues, and ASM (28 points total)

Recall the definition of singly-linked queues and their invariants from Homework 4. These are available
in Appendix A.

Consider the Stack and Heap for the ASM shown below.

Stack Heap /\b
ql | e 5 head | *7 v 1
tail || 1| next
G
next |ﬂ
g2 | * head E‘
tail E—/_-) v 3
next |

(a) (2 points) Does the queue g1 satisfy the queue invariants?
0 Yes X No

(b) (2 points) Does the queue g2 satisfy the queue invariants?
X Yes 0 No

Next, we’ll create a modified version of the higher order function transform (from Homework 3 and
4) that works on queues. The code is shown below:

let rec transform_queue (f: "a gnode -> unit) (g: 'a queue) : unit =
let rec loop (no: ’"a gnode option) : unit =
begin match no with
| None —> ()
| Some n -> let next = n.next in
f n;

loop next
end

in loop g.head

(c) (2 points) Is the transform_gqueue function tail recursive?
X Yes [0 No

(d) (4 points) Assuming that £ can only access its input argument (and nothing else on the stack or heap),
does the transform_gueue function always preserve the queue invariants?
O Yes X No

Explain why:

Since the £ function directly manipulates the ’a gnode, ‘

’ it could violate the queue invariants, e.g., by setting the next to None. ‘

Grading scheme: +2 Selected correct option AND (+0.5 for partially correct reason OR +2 for
completely correct reason)

PennKey: 5

(e) (8 points) Consider the mystery function and the queue g as shown below.

let mystery (no: ’"a gnode) : unit =
if no.next <> None then
let new_node = {v = no.v; next = no.next} in

no.next <- Some new_node

Stack Heap
q 5| head v 1
tail next

Ca

next

Next, we perform the function call transform_queue mystery q.

Draw the ASM stack and heap after the function call is completed. For the purposes of this question,
you can ignore everything on the Stack and Heap, other than what is part of the queue q.
(Note that <> is structural inequality in OCaml.)

Stack Heap
tail next ||
(o
next ||
v 2
next ([~

Finally, we’ll create a modified version of the higher order function fo1d (from Homework 3 and 4)
that works on queues. The code is shown below:
let rec fold_gueue (combine: 'a -> 'b -> ’'b) (base: 'b) (g: 'a queue) : 'b =
let rec loop (no: ’"a gnode option) : 'b =
begin match no with
| None —-> base
| Some n —-> combine n.v (loop n.next)
end
in loop g.head

(f) (2 points) Is the fold_queue function tail recursive?
O Yes X No

(g) (4 points) Assuming that combine can only access its input arguments (and nothing else on the stack
or heap), does the fold_gueue function always preserve the queue invariants?
X Yes 0 No
Explain why:
’ Since the fo1d function only manipulates the a gnode’s v, ‘

’ it can never change the structure of the queue. Hence it will preserve the invariants. ‘

Grading scheme: +2 Selected correct option AND (+0.5 for partially correct reason OR +2 for
completely correct reason)

(h) (4 points) Consider the function call fold_queue (fun hd acc -> hd * acc) 1 g where the queue
q is shown below.

Stack Heap /\b
q 5| head E‘ v 1
tail |[o] next
P

next ﬁ

next ﬁ

‘What will be the result of the above function call? (1-2 sentences will be sufficient here.)
’ The code will find the product of the gnode’s v values. ‘

’ In this case, it will be 6. It will not modify the queue. ‘

PennKey: 7

4. Java SubTyping, Inheritance, and Exceptions (29 points)

This problem refers to two interfaces and several classes that might be part of a program for working
with the Library book series by Genevieve Cogman. You can find them in Appendix B.

(a) (2.5 points) Which of the following classes are an example of simple inheritance in Java (either explic-
itly or implicitly)? (Mark all that apply.)

X Librarian X Fae X Dragon O LiteraryDetective X SubTyping

(b) (2.5 points) Which lines of code are example uses of subtype polymorphism in Java? (Mark all that
apply.)
[0 Line65 X Line66 X Line68 [Line69 X Line71

(c) (2.5 points) Which lines of code are example uses of parametric polymorphism (i.e., generics) in Java?
(Mark all that apply.)

O Line65 [0 Line66 O Line68 [Line69 X Line71

(d) (3.5 points)

vale = new LiteraryDetective();

Which types (there may be one or more) can be correctly used for the declaration of vale above?

X Human X TravelsBetweenWorlds 0 Librarian X rae
] pragon X LiteraryDetective X object

Which of the following lines is legal Java code that will not cause any compile-time (i.e. type check-
ing) or run-time errors?

If it is legal code, check the “Legal Code” box and answer the questions that follow it. If it is not legal,
check one of the “Not Legal” options and explain why.

You can assume each option below is independent and written after line 71 in the main method (as
shown in the Appendix).

(e) (3 points)

TravelsBetweenWorlds lordSilver = new Fae();

X Legal Code
A. The static type of lordsilver is ‘ TravelsBetweenWorlds ‘ .

B. The dynamic class of 1ordsilver is ‘ Fae ‘ .

O Not Legal — Will compile, but will throw an Except ion when run
0 Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

\

(f) (3 points)
Fae vale = new LiteraryDetective();
printName (vale) ;

00 Legal Code

The code above will print (Choose all that apply.)

0 “Vale (aka Sherlock Holmes)”

(1 “This method is abstract and not implemented yet.”
[0 Not Legal — Will compile, but will throw an Exception when run
X Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

Fae is not a subtype of Human

(g) (3 points)

Fae vale = new LiteraryDetective();
System.out.println(vale.travel());

X Legal Code

The code above will print (Choose all that apply.)

[0 “Ineed to create a portal using a book”

0 “Only powerful Fae can travel between worlds”

[0 “I can carry a Fae or a Librarian with me”

X “Tam Vale (aka Sherlock Holmes), but I need a Librarian to help”
0 Not Legal — Will compile, but will throw an Except ion when run
0 Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

(h) (3 points)

travellers.add(princeKai);
System.out.println(travellers.contains (princeKai));

O Legal Code
The code above will print (Choose all that apply.)

O true

[l false
X Not Legal — Will compile, but will throw an Exception when run

0 Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

Cannot cast from Dragon to Comparable, however code will compile

PennKey:

For the following two parts, we have created two new Exception classes:
FaeTriedToEnterLibraryException that is a subtype of Exception, but not RuntimeException.

LiteraryDetectiveFoundAFaeNemesisException thatis a subtype of RuntimeException.
(Note that a instanceof b checks whether a’s dynamic class is a subtype of b.)

(i) (3 points)
public void travelTolLibrary (TravelsBetweenWorlds t) {

if (t instanceof Fae) {
throw new FaeTriedToEnterLibraryException();

} else {
System.out.println(t.travel());

}
}

// somewhere else
travelToLibrary (new Dragon());

[0 Legal Code
The code above will print (Choose all that apply.)

0 “Only powerful Fae can travel between worlds”
[0 “Ican carry a Fae or a Librarian with me”
[0 “Tam Vale (aka Sherlock Holmes), but I need a Librarian to help”
00 It will print something other than the options shown above.
[0 Not Legal — Will compile, but will throw an Except ion when run
X Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):
\

ANSWER: Since FaeTriedToEnterLibraryException is a checked exception, the code won’t compile —
we need either a try/catch or we need to specify that the method throws FaeTriedToEnterLibraryException.

(G) (3 points)
public void nemesis (LiteraryDetective detective,

if (t instanceof Fae) {
throw new LiteraryDetectiveFoundAFaeNemesisException() ;

TravelsBetweenWorlds t) {

} else {
System.out.println (detective.getName ()

}

+ " found a nemesis");

}
// somewhere else
nemesis (new LiteraryDetective (), new Fae());

O Legal Code
The code above will print (Choose all that apply.)

0 “Vale (aka Sherlock Holmes) found a nemesis”

O “Irene found a nemesis”
[0 It will print something other than the options shown above.

X Not Legal — Will compile, but will throw an Exception when run

10

0 Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

\ \
ANSWER: Since LiteraryDetectiveFound AFaeNemesisException is not a checked exception, the code
will compile, but in this case, it will throw the LiteraryDetectiveFoundAFaeNemesisException.

Grading scheme: For (a—d), +0.5 for each option correctly answered

Grading scheme: For lllegal Code (f, g, i, j), +1.5 Selected correct option AND (+0.5 for partially
correct reason OR +1.5 for completely correct reason)

Grading scheme: For (e), +1 Selected correct option AND +1 for each type correctly answered

Grading scheme: For (g), +1.5 Selected correct option AND +1.5 for print option correctly answered

PennKey: 11

5. Java Programming (33 points total)

When working with sets of data, one frequently useful operation is the ability to “group” subsets of the
data that are related in some way. For example, if we have a set of CIS 120 students, we might want to
group them by which recitation sections they are in. Or we might want to take a set of strings and group
them by their lengths. In this problem we will add a method groupBy to Java’s set collection functionality
by implementing a class called Groupableset. Appendix E contains the relevant part of the Java Docs for
the interfaces we will need.

Step 1: Understand the problem: (6 points) As an example, suppose we have the set of strings shown
below (written informally, not using Java notation):

GroupableSet<String> setl = {"ddd", "a", "bb", "cc" , "eee"}

We want setl.groupBy (classifier) to produce the following Map, whose integer keys are the string
lengths found in set1. Each key’s value is a set containing the subset of set1 of strings of that length:

setl.groupBy (classifier) =
key value

1 > {"a"} // group of length 1 strings
2 => {"bb", "cc"} // group of length 2 strings
3 => {"ddd", "eee"} // group of length 3 strings

For simplicity, we will assume that each “group” is identified by an Integer and that groupBy takes an input,
called c1assifier, which determines to which group each element of the set belongs. This classifier is
an object that provides an apply method taking an element returning an Integer for that element’s group.
For the example above, classifier.apply(s) = s.length(), where s is a String.

(a) Suppose that we add the empty string "" to the GroupableSet setl mentioned above. What would
be the key for " in the resulting map after grouping by length? (Choose one.)
] null X o O 0 2 (] there is no such key

(b) Suppose we create a different classifier2 object such that classifier2.apply(s) = 2. Which of
the following are true statements about the map resulting from calling set1.groupBy (classifier2),
i.e., we use this new classifier on the same set1 from above? (Mark all that apply.)

The map will contain the key 1
The map will contain the key 2
The map will contain the key 3
All of the elements will be in one group.

OX OXO

There will be one element in each group.

(c) Suppose we create a GroupableSet<Integer> set3 withelements {0, 1, 2, 3, 4, 5} and we cre-
ate a classifier3suchthatclassifier3.apply(x) = x. Which of the following are true statements
about the map resulting from calling set3.groupBy (classifier3) ? (Mark all that apply.)

The map will contain the key 1

The map will contain the key 2

The map will contain the key 3

All of the elements will be in one group.

XOXKXKX

There will be one element in each group.

12

Step 2: Design the interface (11 points)

We will implement a class called Groupableset<E> that implements the set<E> interface and, additionally,
provides the groupBy method. Note (from the Java Docs in Appendix E) that the Function<T, R> interface
indicates an object that has an R apply (T t) method. Based on the desired behavior above, the type of the
groupBy method we use is as follows:

Map<Integer, Set<E>> groupBy (Function<E, Integer> classifier)

(d) The type of the groupBy method is an example of parametric polymorphism (a.k.a. a generic type).
X True U False

Now consider the example uses of groupBy given by the classes Maina, MainB, MainC, and MainD as shown
in Appendix C. Answer each question below. If the answer is “false” give a brief explanation.

Grading scheme: 2 points each - for (f) (the only false one): 2 points for the explanation about the
mismatched Function types.

(e) The code in Maina is well typed. (Has no compile-time errors.)
X True
[J False because |

(f) The code in MainB is well typed. (Has no compile-time errors.)
[True
X False because | l

Classifier2 implements Function<Integer, Integer> NOt Function<String, Integer>

(g) The code in Mainc is well typed. (Has no compile-time errors.)
X True
[J False because |

(h) The code in MainD is well typed. (Has no compile-time errors.)
X True
[J False because |

(i) Which classes exhibit the use of anonymous inner classes? (Mark all that apply.)
[J MainaA [0 MainB X MainC X MainD

PennKey: 13

Step 3: Write test cases (6 points)

Recall that, when testing a method like groupBy, it is often helpful to think about the properties that

we expect to hold, especially in relation to other operations. Such properties can usually be turned into test
cases.

Assume the following:

* set is an object of type GroupableSet<String>

* classifier iS an object of type Function<String, Integer>

* map is an object of type Map<Integer, Set<String>> returned by set.groupBy (classifier)

* k, k1, and k2 are int values (which can be used implicitly as Integer objects)

* None of the objects are null and none of the methods raise exceptions. (We would write other kinds

of test cases for those situations.)

Each of the following properties relates groupBy to the Set<E>, Map<Integer, Set<E>>, and
Function<E, Integer> interface operations. Choose one option for each blank to make the property a
correct description of the intended behavior of groupBy.

(j) For every o, if then there is some k such that k == classifier.apply (o) and

map.get (k) .contains (o).

O 'map.containsKey (k)

O] map.containsKey (k)
] !set.contains (0)
X set.contains (o)
(k) Forevery o and k, if then set.contains (o).
] 'map.get (k) .contains (o)

X map.get (k) .contains (o)
O 'map.containsKey (k)
O

map.containsKey (k)

(I) For every o, k1, and k2, if map.get (k1) .contains (o) and map.get (k2) .contains (o)

then

X k1 == k2andkl == classifier.apply (o)
[0 k1 '= k2andkl == classifier.apply (o)
0 x1 == k2andkl != classifier.apply (o)
O k1 '= k2andkl !'= classifier.apply (0)

14

Step 4: Implement the code (10 points)

We want every GroupableSet<E> object to be an instance of set<t>, but we don’t want to have to re-
implement all of the set interface operations to achieve that. Recall that an adapter class provides default
implementations of a given interface. Appendix D gives an appropriate setAdapter<t> implementation of
the set<E> interface that we will use below as the basis for Groupableset. Note that it contains the private
field set.

Now complete the implementation of the groupBy method. You will need to create new set and Map
objects—we have imported the Treeset and TreeMap classes for you.

import java.util.Map;

import java.util.Set;

import java.util.TreeMap;

import java.util.TreeSet;

import java.util.function.Function;

public class GroupableSet<E> extends SetAdapter<E> implements Set<E> {

public GroupableSet (Set<E> set) {
super (set) ;

public Map<Integer, Set<E>> groupBy (Function<E, Integer> classifier) ({
Map<Integer, Set<E>> groups = new TreeMap<Integer, Set<E>>();

for (E elt : this) {

Integer group = classifier.apply(elt);

if (groups.containsKey (group)) {
Set<E> elts = groups.get (group) ;
elts.add(elt);

} else {
Set<E> elts = new TreeSet<E>();
elts.add(elt);
groups.put (group, elts);

}

return groups;

Grading Rubric:

* 2 points - creating a new TreeMap of the appropriate type.

* 2 points - proper iteration: i.e., using either self.Iterator () or for-each loop with this
* 1 points - correctly using classifier.apply on the iterated element

* 1 points - checking the map being constructed by using containsKey

* 2 points - adding the element to the correct group (one point per branch)

* 1 point - correctly constructing a new Treeset if the group doesn’t exist

* 1 point - adding the new set to the map with the right key

PennKey: 15

6. Java Swing Programming (10 points)

The code in Appendix F implements a simple Java GUI program in which a 50x50 black box follows
the mouse cursor around the window. It looks like this (the mouse cursor is not shown):

[] @ Swing Paint Demo

The following true/false questions concern this application and Java Swing programming in general.

a. True X False [J
The type MyPanel is a subtype of object.

b. True O False X
Lines 5-9 create a new object whose static type and dynamic class are, both, Runnable.

c. True X False OJ

If we changed line 27 from addMouseMot ionListener to addMouseListener then the black box would
not follow the mouse cursor.

d. True O False X

If we changed line 27 from new MouseAdapter tO new MouseMotionListener, the code would still
compile.

e. True OJ False X
The instance variables x and vy, declared on lines 23 and 24, can be declared as final.

f. True X False [J
There are two @override annotations in the code. If we removed them, the code would still compile.

g. True X False [

The mouseMoved method on line 28 is called by the Swing event loop in reaction to the user moving
the mouse in the main window of the application.

16

h. True OJ False X
The paintcomponent method on line 42 is only invoked once, at the start of the application.

i. True X False OJ

The anonymous inner class defined on line 27 implements or inherits all members of the
MouseMot ionListener interface.

jo True O False X
The cur class and the createAndshowGUTI () method share the same stack and heap in the Java ASM.

PennKey: 17

CIS 120 Final Exam — Appendices

A OCaml Queue Code and Invariants

(# INVARIANT: %)

(+ — g.head and qg.tail are either both None, or #*)

(+ — g.head and qg.tail both point to Some nodes, and x)

(* - g.tail is reachable by following ’‘next’ pointers from q.head x)
(* - g.tail’s next pointer is None *)

type 'a gnode = { v: "a;
mutable next: ’a gnode option }

type 'a queue = { mutable head: ’"a gnode option;
mutable tail: ’a gnode option }

Java Code for SubTyping

interface Human {
public String getName () ;

1

2

3

4

5 interface TravelsBetweenWorlds {
6 public String travel();

7

8

9 class Librarian implements Human, TravelsBetweenWorlds {

10

11 private String name;

12

13 public Librarian(String name) {

14 this.name = name;

15 }

16

17 @Override

18 public String travel() {

19 return "I need to create a portal using a book";
20 }

21

22 @Override

23 public String getName () {

24 return name;

25 }

26 }

27

28 class Fae implements TravelsBetweenWorlds {

29

30 @Override

31 public String travel() {

32 return "Only powerful Fae can travel between worlds";
33 }

34 3

35

36 class Dragon implements TravelsBetweenWorlds {

37

38 @Override

39 public String travel() {

40 return "I can carry a Fae or a Librarian with me";
41 }

42 }

43

44 class LiteraryDetective extends Fae implements Human {
45

46 @Override

47 public String getName () {

48 return "Vale (aka Sherlock Holmes)";

49 }

50

51 @Override

52 public String travel() {

53 return "I am " + getName() + ", but I need a Librarian to help";
54 }

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71

public class SubTyping {
public static void printName (Human human) {
System.out.println (human.getName ());
public static void main (String[] args) {

Librarian irene = new Librarian("Irene");
TravelsBetweenWorlds princeKai = new Dragon();

printName (irene) ;
princeKai.travel();

Set<TravelsBetweenWorlds> travellers = new TreeSet<TravelsBetweenWorlds>();

Java Code for groupBy Examples

031N N B W~

A A A DS SABABER D WOLOWLWWLWLLLVLWLLWLWWERDNDDNDDNDEDNNDNDNDNDDND /== = = = = =
N AN A WD, OO0 NPE WD, OOVOTITANNPE WD =, OOVOIANUN R WD~ OO

class Global {
static GroupableS

et<String> set

/% ... omitted ... */

class Classifierl implements Function<String, Integer> {

@Override

public Integer apply(String s)

return s.leng

th();

{

class Classifier2 implements Function<Integer, Integer> {

@Override

public Integer apply(Integer x)

return x;

class MainA {

{

public static void main(String[] args) {

Map<Integer,

class MainB {

Set<String>> m

Global.set.groupBy (new Classifierl());

public static void main(String[] args) {

Map<Integer,

class MainC {

Set<String>> m

Global.set.groupBy (new Classifier2());

public static void main(String[] args) {
Map<Integer, Set<String>> m =
Global.set.groupBy (new Function<String, Integer>() {
@Override

public Integer apply(String s) {
return s.length();

class MainD {

public static void main(Stringl[]

Map<Integer,

Set<String>> m

args) {
Global.set.groupBy (s —-> s.length());

D Java Code For setAdapter

import java.util.Iterator;
import java.util.Set;

/%
This class provides a "wrapper" implementation that delegates
each Set method to the set provided to the constructor.
*/

public class SetAdapter<E> implements Set<E> {

/* The set to which operations are delegated =/
private Set<E> set;

public SetAdapter (Set<E> set) {
this.set = set;

@Override
public boolean isEmpty () {
return this.set.isEmpty();

@Override
public boolean add(E e) {
return this.set.add(e);

@Override
public boolean contains (Object o) {
return this.set.contains (o) ;

@Override
public Iterator<E> iterator() {
return this.set.iterator();

E Java Docs

interface Set<E> (Excerpt)
Type Parameters:

* E - the type of elements in this set

boolean add(E e)
Adds the specified element to this set if it is not already present (optional operation).

* Returns: true if this set did not already contain the specified element

* Throws:
UnsupportedOperationException - if the add operation is not supported by this set
ClassCastException - if the class of the specified element prevents it from being added to this set
NullPointerException - if the specified element is null and this set does not permit null elements

IllegalArgumentException - if some property of the specified element prevents it from being added
to this set

boolean contains (Object o)

* Returns: true if this set contains the specified element

boolean isEmpty ()

¢ Returns: true if this set contains no elements.

Iterator<E> iterator ()

e Returns: an iterator over the elements in this set

interface Map<K, V> (Excerpt)
Type Parameters:

* K - the type of keys maintained by this map

* v - the type of mapped values

boolean containsKey (Object key)

* Returns: true if this map contains a mapping for the specified key.

V get (Object key)

* Returns: the value to which the specified key is mapped, or null if this map contains no mapping for
the key.

V put (K key, V wvalue)

Associates the specified value with the specified key in this map (optional operation). If the map
previously contained a mapping for the key, the old value is replaced by the specified value. (A
map m is said to contain a mapping for a key k if and only if m.containsKey (k) would return

true.)

* Parameters:
key - key with which the specified value is to be associated
value - value to be associated with the specified key
* Returns: the previous value associated with key, or null if there was no mapping for key. (A null

return can also indicate that the map previously associated null with key, if the implementation
supports null values.)

interface Iterator<k> (Excerpt)

boolean hasNext ()

¢ Returns: true if the iteration has more elements

E next ()
¢ Returns: the next element in the iteration

¢ Throws: NoSuchElementException - if the iteration has no more elements

interface Function<T,R>
Type Parameters:

* T - the type of the input to the function

* R - the type of the result of the function

R apply (T t)
Applies this function to the given argument.

* Parameters: t - the function argument

¢ Returns: the function result

Java Swing Code

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

// library imports omitted to save space (this code compiles)
public class GUI ({

public static void main(String[] args) {
SwingUtilities.invokeLater (new Runnable () {
public void run() {
createAndShowGUI () ;

1)

static void createAndShowGUI () {
JFrame f = new JFrame ("Swing Paint Demo");
f.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
f.add (new MyPanel());
f.pack();
f.setVisible (true);

@SuppressWarnings ("serial")
class MyPanel extends JPanel {
private int x;
private int y;

public MyPanel () {
addMouseMotionListener (new MouseAdapter () {
public void mouseMoved (MouseEvent e) {
x = e.getX();
y = e.getY();
repaint ();

1)

@Override
public Dimension getPreferredSize() {
return new Dimension (250, 250);

@Override

public void paintComponent (Graphics g) {
super.paintComponent (g) ;
g.setColor (Color.BLACK) ;
g.fillRect (x, vy, 50, 50);

Note: the boxes in the picture below don’t mean anything—the diagram is copied from the course lecture
slides.

Two interfaces for mouse listeners

interface MouselListener extends EventListener {
public void mouseClicked(MouseEvent e);
public void mouseEntered(MouseEvent e);
public void mouseExited(MouseEvent e);
public void mousePressed(MouseEvent e);
public void mouseReleased(MouseEvent e);

interface MouseMotionListener extends EventListener {
public void mouseDragged(MouseEvent e);

public void mouseMoved(MouseEvent e);

}

10

	OCaml Queue Code and Invariants
	Java Code for SubTyping
	Java Code for [language=Java,backgroundcolor=white]groupBy Examples
	Java Code For [language=Java,backgroundcolor=white]SetAdapter
	Java Docs
	Java Swing Code

