
CIS 1200 Final Exam December 22, 2022
Benjamin C. Pierce and Swapneel Sheth, instructors

Name (printed):

PennKey (penn login id):

I certify that I have complied with the University of Pennsylvania’s Code of Academic Integrity in
completing this examination.

Signature: Date:

• There are 120 total points. The exam period is 120 minutes long.

• There are 19 pages in the exam and an Appendix for your reference.

• Please begin by writing your PennKey (e.g., bcpierce) at the bottom of all the odd-
numbered pages in the rest of the exam.

• Please skim the entire exam first—some of the questions will take significantly longer than
others.

• Do not spend too much time on any one question. Be sure to recheck all of your answers.

• We will ignore anything you write on the Appendix.

• For coding problems: aim for accurate syntax, but we will not grade your code style for
indentation, spacing, etc.

• If you need extra space for an answer, you may use the scratch page at the end of the exam;
make sure to clearly indicate that you have done this in the normal answer space for the
problem.

• Good luck!

1

1. OCaml and Java Concepts (20 points total)

Indicate whether the following statements are true or false.

(a) True ⇤ False ⇤
let rec iterate (f: ’a -> ’a option) (zero: ’a) (count: int) : ’a =

begin match f zero with
| None -> zero
| Some one -> let res = iterate f one (count + 1) in

print_endline (string_of_int count);
res

end

The function shown above is tail recursive.

(b) True ⇤ False ⇤
In OCaml, if a given sig has five methods defined, it is possible for the struct that
implements it to have more than five methods.

(c) True ⇤ False ⇤
In the OCaml ASM, stack bindings are mutable by default whereas in the Java ASM,
they are immutable by default.

(d) True ⇤ False ⇤
The advantage of enforcing invariants like the Binary Search Tree invariant is that they
eliminate the need for testing (because functions like insert and lookup are guaran-
teed to be correct).

(e) True ⇤ False ⇤
In OCaml, every mutable reference could refer to None.

(f) True ⇤ False ⇤
In our OCaml singly-linked queue implementations, one advantage over the in-built
list is that we can efficiently add items to the end of the queue.

2

(g) True ⇤ False ⇤
In Java, whenever you implement the Comparable interface, you should also override
the equals method compatibly.

(h) True ⇤ False ⇤
In Java, every subclass class must call the superclass constructor explicitly.

(i) True ⇤ False ⇤
In Java, every Exception must either be caught (with a try-catch block) or declared
(via throws) in the method signature.

(j) True ⇤ False ⇤
In Java, the static type of a variable can be the same as the dynamic class of the object
the variable refers to.

PennKey: 3

2. OCaml: Binary Search Trees and Higher Order Functions (14 points total)

Recall the definitions of generic transform function for lists and of generic binary trees,
which are given in Appendix A.

(a) (2 points) Which of the trees below satisfy the binary search tree invariant? (Mark all
that apply.)

3 7 4 3
\ / \ / \ / \
7 5 3 2 5 2 4
\ \ / \ \
9 3 1 4 8

⇤ Tree (a) ⇤ Tree (b) ⇤ Tree (c) ⇤ Tree (d)

(b) (3 points) Consider the following modification to the transform function that now
takes in a tree as input.
let rec transform_tree (f: ’a -> ’b) (t: ’a tree) : ’b tree =

begin match t with
| Empty -> Empty
| Node(lt, x, rt) -> Node(transform_tree f lt, f x,

transform_tree f rt)
end

If the following tree t is provided as input to the code shown below...
t = 4

/ \
2 6

/ \
5 8

... what will be the resulting output tree t1? Draw it below.
let t1 = transform_tree (fun x -> 3 * x) t

t1 =

4

(c) (3 points) Does the transform_tree function preserve BST invariants? That is, if
the input to the function is a BST and any function f of type int->int, will it always
return a valid BST as output? (Choose one.)
⇤ Yes. If you chose yes, explain why.

⇤ No. If you chose no, provide an example of a function f as input using the tree t.
(For the function, you can choose to write code or describe it in words. If it’s the latter,
please be as precise and accurate as possible.)

PennKey: 5

(d) (3 points) Consider the following higher order function that takes in a tree as input.
let rec mystery (f: ’a -> bool) (t: ’a tree) : ’a tree =

begin match t with
| Empty -> Empty
| Node(lt, x, rt) -> if f x

then Node(mystery f lt, x, mystery f rt)
else Empty

end

If the same tree t is provided as input to the code shown below...
t = 4

/ \
2 6

/ \
5 8

...what will be the resulting output tree t2? Draw it below.
let t2 = mystery (fun x -> x < 6) t

t2 =

(e) (3 points) Does the mystery function preserve BST invariants? That is, if the input
to the function is a BST and any function f of type int->bool, will it always return a
valid BST as output? (Choose one.)
⇤ Yes. If you chose yes, explain why.

⇤ No. If you chose no, provide an example of a function f as input using the tree t.
(For the function, you can choose to write code or describe it in words. If it’s the latter,
please be as precise and accurate as possible.)

6

3. Java Design Problem (33 points total)

Step 1: Understand the problem For Homework 7 and 8, you worked with Iterators in
Java that iterated over a single source of data (such as one CSV file). For this design problem,
we will create two new kinds of iterators, called SequenceIterator and MergeIterator

that can each draw from two sources of data.

A SequenceIterator is built from two other iterators, say first and second. Its next

method will return items from first (by calling first.next()) till first becomes empty
(first.hasNext() returns false); then it will return items from second until it, too, be-
comes empty.

A MergeIterator is also built from two iterators, say first and second. Its next method
will first call first.next() and return its result, assuming first.hasNext() is true; the
next item it returns is the one returned by calling second.next(), assuming
second.hasNext() is true. The third call to next returns the next item returned from
first.next(), and so on, continuing to alternate between the two. If one of the iterators
has no more items left, it will use the other iterator for the rest.

For example, if first is an iterator over the array {1, 2, 3} and second is an iterator over
the array {4, 5}, then...

• Calling next() on an iterator obtained from new SequenceIterator(first,second)

will return 1, 2, 3, 4, and 5, after which hasNext() will return false.

• Calling next() on an iterator obtained from new MergeIterator(first,second)

will return 1, 4, 2, 5, and 3, after which hasNext() will return false.

These examples are written out as JUnit tests on page 9.

(No questions on this page.)

PennKey: 7

Step 2: Design the interfaces We are considering two classes here—SequenceIterator

and MergeIterator—that both implement the Iterator<Integer> interface.

Recall that an Iterator is an object that yields a sequence of elements. The Javadocs for
the Iterator<E> interface are given in Appendix B.

We should also think a bit about the circumstances under which they can raise exceptions.

(a) (4 points) Based on the Iterator interface, is it possible for the next() method of a
sequence or merge iterator to throw an IOException (either intentionally or acciden-
tally)?

⇤ Yes ⇤ No
In one sentence, explain your answer:

(b) (4 points) Based on the interface, is it possible for the next() method of a sequence
or merge iterator to throw a NullPointerException (either intentionally or acciden-
tally)?

⇤ Yes ⇤ No
In one sentence, explain your answer:

8

Step 3: Write test code for SequenceIterator and MergeIterator One benefit of using
the Iterator interface is that we can create iterators from other datatypes in Java (without
needing to use the file system). Here are two example test cases written in this style.

@Test
public void testSequenceHasNextAndNext() {

Integer[] firstElts = {1, 2, 3};
Integer[] secondElts = {4, 5};
Iterator<Integer> first = Arrays.asList(firstElts).iterator();
Iterator<Integer> second = Arrays.asList(secondElts).iterator();

SequenceIterator sequenced = new SequenceIterator(first, second);
assertTrue(sequenced.hasNext());
assertEquals(1, sequenced.next());
assertEquals(2, sequenced.next());
assertEquals(3, sequenced.next());
assertEquals(4, sequenced.next());
assertEquals(5, sequenced.next());
assertFalse(sequenced.hasNext());
assertFalse(first.hasNext());
assertFalse(second.hasNext());

}

@Test
public void testMergeHasNextAndNext() {

Integer[] firstElts = {1, 2, 3};
Integer[] secondElts = {4, 5};
Iterator<Integer> first = Arrays.asList(firstElts).iterator();
Iterator<Integer> second = Arrays.asList(secondElts).iterator();

MergeIterator merged = new MergeIterator(first, second);
assertTrue(merged.hasNext());
assertEquals(1, merged.next());
assertEquals(4, merged.next());
assertEquals(2, merged.next());
assertEquals(5, merged.next());
assertEquals(3, merged.next());
assertFalse(merged.hasNext());
assertFalse(first.hasNext());
assertFalse(second.hasNext());

}

(No questions on this page.)

PennKey: 9

(a) (4 points) Fill in the blanks in the following test so that all the assertions pass. Each
line beginning assert__________ must be completed with either True or False. The
other blanks should be filled with numbers.

@Test
public void mergeSame() {

Integer[] elts = {1, 2, 3};
Iterator<Integer> iter = Arrays.asList(elts).iterator();

MergeIterator merged = new MergeIterator(iter, iter);

assertEquals(1, merged.next());

assertEquals(________, iter.next());

assertEquals(________, merged.next());

assert_________________(merged.hasNext());

assert_________________(iter.hasNext());
}

10

(b) (6 points) Again, fill in the blanks so that all the assertions pass.

@Test
public void nestedMerge() {

Integer[] firstElts = {1, 2};
Iterator<Integer> first = Arrays.asList(firstElts).iterator();

Integer[] secondElts = {3, 4};
Iterator<Integer> second = Arrays.asList(secondElts).iterator

();

Integer[] thirdElts = {5, 6};
Iterator<Integer> third = Arrays.asList(thirdElts).iterator();

MergeIterator merged12 = new MergeIterator(first, second);
MergeIterator merged123 = new MergeIterator(merged12, third);

assertEquals(1, merged123.next());

assertEquals(__________, merged123.next());

assertEquals(__________, merged123.next());

assertEquals(__________, merged123.next());

assertEquals(__________, merged123.next());

assert_________________(merged12.hasNext());

assert_________________(third.hasNext());
}

PennKey: 11

Step 4: Implement MergeIterator (15 points)

Complete the code for MergeIterator. Your implementation should satisfy the Iterator<

Integer> interface.

Hint: You might want to think about what invariant the state of your iterator maintains.

public class MergeIterator implements Iterator<Integer> {

private Iterator<Integer> first;
private Iterator<Integer> second;
/ / Add f i e l d s as needed :

/ / you can assume f i r s t and second are n o t n u l l
public MergeIterator (Iterator<Integer> first, Iterator<Integer>

second) {
this.first = first;
this.second = second;

}

@Override
public boolean hasNext() {

}
/ / space f o r n e x t () i s on t h e f o l l o w i n g page . . .

12

@Override
public Integer next() {

}
}

PennKey: 13

4. Java Subtyping and Dynamic Dispatch (24 points total)

This problem refers to three interfaces and several classes that might appear in program about
Animals. You can find them in Appendix C.

(a) (2 points) Which lines of code are example uses of subtype polymorphism in Java?
(Mark all that apply.)

⇤ Line 84 ⇤ Line 85 ⇤ Line 86 ⇤ Line 87 ⇤ Line 89

(b) (2 points) Which lines of code are example uses of parametric polymorphism (i.e.,
generics) in Java? (Mark all that apply.)

⇤ Line 84 ⇤ Line 85 ⇤ Line 86 ⇤ Line 87 ⇤ Line 89

(c) (4 points)
__________________ winter = new Dolphin();

Which type can be correctly used for the declaration of winter above? (Mark all that
apply.)
⇤ Animal ⇤ Flyer ⇤ Penguin ⇤ Swimmer

⇤ Mammal ⇤ Dolphin ⇤ Bat ⇤ Object

14

Which of the following lines is legal Java code that will not cause any compile-time
(i.e., type checking) or run-time errors?

If it is legal code, check the “Legal Code” box and answer the questions that follow it.
If it is not legal, check one of the “Not Legal” options and explain why.
You can assume each option below is independent and written after line 91 in the main
method (as shown in the Appendix).

(d) (3 points)
Animal dog = new Mammal();

⇤ Legal Code
A. The static type of dog is .

B. The dynamic class of dog is .

⇤ Not Legal — Will compile, but will throw an Exception when run
⇤ Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

(e) (3 points)
Mammal dolphin = new Dolphin();
System.out.println(dolphin.commonName());

⇤ Legal Code
The code above will print (Choose all that apply.)
⇤ “Mammal”
⇤ “Dolphin”

⇤ Not Legal — Will compile, but will throw an Exception when run
⇤ Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

PennKey: 15

(f) (3 points)
Flyer bat = new Bat();
bat.echoLocate();

⇤ Legal Code
The code above will print (Choose all that apply.)
⇤ “Bat”
⇤ “Fly, bat, fly!”
⇤ “<<<eeek>>>”

⇤ Not Legal — Will compile, but will throw an Exception when run
⇤ Not Legal — Will not compile
Reason for not legal (in either of the two illegal cases above):

(g) (3 points)
Swimmer swim = new Dolphin();
Animal animal = (Animal) swim;
System.out.println(animal.distinguishingFeature());

⇤ Legal Code

A. The static type of animal is .

B. The dynamic class of animal is .

C. The code above will print (Choose all that apply.)
⇤ “Being in Titanic”
⇤ “Hair”
⇤ “Tuxedo Feather Pattern”

⇤ Not Legal — Will compile, but will throw an Exception when run
⇤ Not Legal — Will not compile
Reason for not legal (in either of the two illegal cases above):

(h) (4 points)
Swimmer swim = new ___???___();
Animal animal = (Dolphin) swim;
System.out.println(animal.distinguishingFeature());

What can be used on the first line (instead of the ???) so that the code successfully
compiles but throws an exception when run? (Mark all that apply.)
⇤ Swimmer ⇤ Bat ⇤ Penguin ⇤ Object

16

5. Java Swing Programming (29 points total)

Appendix D shows the code for a simplified version of the PaintE application that was
demoed in lecture. The following questions use this code to test your understanding of both
Swing and Java programming idioms.

(a) (2 points) The class PointMode defined on line 8 implements the Swing interface
MouseMotionListener.

True ⇤ False ⇤

(b) (2 points) How will the program’s behavior change if we delete the call to
canvas.repaint() on line 67? (Select one.)

⇤ Drawing points will work fine, but lines will only appear after another point is
entered (by going back to Point mode and clicking in the drawing area).

⇤ Drawing points will work fine, and lines will be drawn as usual after the mouse is
released, but the “preview” behavior of line drawing will stop working.

⇤ Nothing at all will ever be displayed – just a blank window.
⇤ The initial GUI will be displayed, but no shapes will ever be drawn.
⇤ No change in behavior.

PennKey: 17

(c) (3 points) How many instances of the class PointMode are created during a whole run
of the program? (Select one.)

⇤ None.
⇤ At most one.
⇤ Exactly one.
⇤ One for every time the user enters a line (by clicking the drawing canvas twice

while in line-drawing mode).
⇤ Something else:

(d) (3 points) How many instances of the class LineStartMode are created during a whole
run of the program? (Select one.)

⇤ None.
⇤ At most one.
⇤ Exactly one.
⇤ One for every time the user enters a line (by clicking the drawing canvas twice

while in line-drawing mode).
⇤ One for every time the user enters a line (by clicking the drawing canvas twice

while in line-drawing mode), plus one when the program starts running.
⇤ Something else:

(e) (3 points) How many instances of the class LineEndMode are created during a whole
run of the program? (Select one.)

⇤ None.
⇤ At most one.
⇤ Exactly one.
⇤ One for every time the user enters a line (by clicking the drawing canvas twice

while in line-drawing mode).
⇤ One for every time the user enters a line (by clicking the drawing canvas twice

while in line-drawing mode), plus one when the program starts running.
⇤ Something else:

18

(f) (8 points) At the moment, lines and points are always drawn in black. If we wanted
to give the user the ability to draw in multiple colors, what would we need to add or
change in the existing code? (Just summarize the changes briefly in English – no need
to actually write anything in Java. Make sure to consider how this change would affect
the fields of the PaintE class, the construction of the GUI, and the behavior of GUI
elements.)

(g) (8 points)
Suppose we wanted to let the user draw rectangles in addition to lines and points. The
“look and feel” should be similar to adding lines: when in Rectangle mode, the user
can click, drag, and release the mouse to add a new rectangle to the picture; while
dragging, a preview of the rectangle will be drawn. What do we need to add to the
code in Appendix D to implement this new feature? (Just describe the additions in
English—no need to write any Java code.)

PennKey: 19

Scratch Space
Use this page for work that you do not want us to grade. If you run out of space elsewhere in the
exam and you do want to put something here that we should grade, make sure to put a clear note
in the normal answer space for the problem in question.

20

	OCaml Code
	Iterator Interface
	Java Code for Subtyping
	Java Code for Paint

