
CIS 120 Final Exam May 9, 2022

Name (printed):

Pennkey (letters, not numbers):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Aca-
demic Integrity in completing this examination.

Signature: Date:

• There are 120 total points. The exam period is 120 minutes long.

• Please skim the entire exam first—some of the questions will take signifi-
cantly longer than others.

• There are 14 pages in this exam.

• Do not collaborate with anyone else when completing this exam.

• Please write your name and Pennkey (e.g., sweirich) on the bottom of
every other page where indicated.

• There is a separate appendix for reference. Answers written in the appendix
will not be graded.

• Good luck!

1



1. OCaml Higher-Order functions (12 points)

Recall the higher-order list processing functions transform and fold (reproduced in Appendix A). Each
part of this problem below begins with a sample function written using simple recursion over lists, followed
by several alternative versions written using fold. In each part, first indicate what the function returns for
the sample input shown. Then mark all of the alternatives that implement the same behavior as the recursive
sample. There may be zero, one, or more than one such function. Some of the alternatives do not
typecheck—do not mark these.

(a) let rec func1 (x:’a) (lst: ’a list) : int =
begin match lst with
| [] -> 0
| hd :: tl -> if x = hd then 0 else 1 + func1 x tl
end

let ans1 = func1 3 [0; 1; 2; 3]

What is the result? ans1 =

Which of the following functions behave the same as func1 on all inputs? (Check all that apply.)

⇤ let func1 (x: ’a) (lst: ’a list) : int =
fold (fun hd acc -> if (x = hd) then 0 else 1 + acc) 0 lst

⇤ let func1 (x: ’a) (lst: ’a list) : int =
fold (fun hd acc -> 1 + acc) 0 lst

⇤ let func1 (x: ’a) (lst: ’a list) : int =
fold (fun y acc -> if y then 0 else 1 + acc)
0
(transform (fun hd -> x = hd) lst)

(b) let func2 (lst: ’a list): ’a list =
let rec loop (res: ’a list) (acc: ’a list) =

begin match res with
| [] -> acc
| hd :: tl -> loop tl (hd :: acc)
end in

loop lst []

let ans2 = func2 [0; 1; 2; 3]

What is the result? ans2 =

Which of the following functions behave the same as func2 on all inputs? Recall that @ appends two
lists in OCaml. (Check all that apply.)

⇤ let func2 (lst: ’a list): ’a list =
fold (fun x acc -> x :: acc) [] lst

⇤ let func2 (lst: ’a list) : ’a list =
fold (fun x acc -> acc @ [x]) [] lst

⇤ let func2 (lst: ’a list): ’a list =
fold (fun x xs -> x @ xs) [] lst

2



2. OCaml queues and Java Linked Lists (13 points)

Consider the following OCaml functions that work with the queue data structure shown in Appendix B.
The Java LinkedList class also implements a mutable, linked data structure. For each OCaml function
below, use the documentation in Appendix C to determine which method of the LinkedList class provides
the most similar functionality, or write none if there is no corresponding method in this class. This question
tests your understanding of OCaml, so each function is called f.

For some of these operations, you may also be asked to indicate whether the function f is tail recursive.

(a) let f (q: ’a queue) : bool =
q.head = None

Most similar LinkedList method:

(b) let f (q: ’a queue) : unit =
q.head <- None; q.tail <- None

Most similar LinkedList method:

(c) let f (q: ’a queue) : int =
let rec loop (no: ’a qnode option) : int =
begin match no with
| None -> 0
| Some n -> 1 + loop n.next
end

in loop q.head

Most similar LinkedList method:
Is this function tail recursive? ⇤ Yes ⇤ No

(d) let f (q: ’a queue) (elt:’a) : int =
let rec loop (no: ’a qnode option) (i:int) : int =
begin match no with
| None -> -1
| Some n -> if n.v = elt then i else loop n.next (i+1)
end

in loop q.head 0

Most similar LinkedList method:
Is this function tail recursive? ⇤ Yes ⇤ No

(e) let f (q: ’a queue) : ’a queue =
let rec loop (no: ’a qnode option) (q2 : ’a queue) : ’a queue =
begin match no with
| None -> q2
| Some n -> enq q2 n.v ; loop n.next q2
end

in let q2 = { head = None; tail = None}
in loop q.head q2

Most similar LinkedList method:
Is this function tail recursive? ⇤ Yes ⇤ No

PennKey: 3



3. TreeSets in Java (10 points)

The Java TreeSet class is implemented using a Binary Search Tree (BST). This class maintains the
Binary Search Tree Invariant by storing the entries in the tree in order. Based on your understanding of
BSTs in OCaml, which of the following methods of this class make use of this invariant?

(a) int size()

Returns the number of elements in this set (its cardinality).

Uses BST invariant: ⇤ Yes ⇤ No

(b) boolean contains(Object value)

Returns true if this set contains the specified element.

Uses BST invariant: ⇤ Yes ⇤ No

(c) K floor(E e)

Returns the greatest element in this set less than or equal to the given element, or null if there is no
such element.

Uses BST invariant: ⇤ Yes ⇤ No

(d) boolean isEmpty()

Returns true if this set contains no elements.

Uses BST invariant: ⇤ Yes ⇤ No

(e) Iterator<E> iterator()

Returns an iterator over the elements in this set in ascending order.

Uses BST invariant: ⇤ Yes ⇤ No

4



Connect Four
The remaining exam problems refer to a partial implementation of the game shown in Appendices D,

E, F, and G and summarized below.

The Connect Four game features two players (WHITE and BLACK) taking turns adding pieces to a game board.
In the physical version of the game, the game board is held upright, so players can only add their piece to
the lowest empty spot in a given column. A player wins if they line up four of their pieces in a straight line,
either vertically or horizontally. (For simplicity, this version does not look at diagonals.) The WHITE player
goes first.

A sample game in progress is shown in the figure below on the left. By selecting the third column, the BLACK
player can win by stacking four of their pieces in this column, as shown in the figure on the right.

Figure 1: Connect Four game in progress.
It is BLACK’s turn.

Figure 2: BLACK plays in the third column
to win.

Take a moment now to familiarize yourself with the code in the appendices. Appendix D defines classes
that represent the two players. The code shown in Appendices E-G is all part of the same class, called
ConnectFour, with the structure shown below.

class ConnectFour {
public static final int ROWS = 6;
public static final int COLUMNS = 7;

// Appendix E: instance variables and methods for game logic

// Appendix F: inner class View

// Appendix G: instance variables for GUI, inner class Mouse,

// and ConnectFour constructor

public static void main(String[] args) {
SwingUtilities.invokeLater(() -> new ConnectFour());

}
}

(There is nothing to answer on this page.)

PennKey: 5



4. Understanding OO Class Definitions (15 points)

The following questions refer to the classes defined in Appendix D that represent the two players in the
Connect Four game and to the LinkedList class from the Collections Framework (Appendix C).

Which of the following code blocks is legal Java code that will not cause any compile-time (i.e. type
checking) or run-time errors? If it is legal code, check the “Legal Code” box and answer the questions that
follow it. If it is not legal, check one of the “Not Legal” options and explain why. You can assume each
block below is independent and written in some static method defined in the ConnectFour class and that the
appropriate imports have been made at the top of the file.

(a) (3 points)

Player p = Player.WHITE;
Player n = p.getNext();
boolean ans = (n == p);

⇤ Legal Code
A. The static type of p is .
B. The dynamic class of p is .
C. The value of ans is .

⇤ Not Legal — Will compile, but will throw an Exception when run
⇤ Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

(b) (3 points)

Player p = new Player(Color.WHITE);
boolean ans = p.equals(Player.WHITE);

⇤ Legal Code
A. The static type of p is .
B. The dynamic class of p is .
C. The value of ans is .

⇤ Not Legal — Will compile, but will throw an Exception when run
⇤ Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

6



(c) (3 points)

Player p = new WhitePlayer();
boolean ans = p.equals(Player.WHITE);

⇤ Legal Code
A. The static type of p is .
B. The dynamic class of p is .
C. The value of ans is .

⇤ Not Legal — Will compile, but will throw an Exception when run
⇤ Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

(d) (3 points)

List<Player> lst = new LinkedList<Player>();
lst.add(Player.WHITE);
boolean ans = lst.contains(Player.WHITE);

⇤ Legal Code
A. The static type of lst is .
B. The dynamic class of lst is .
C. The value of ans is .

⇤ Not Legal — Will compile, but will throw an Exception when run
⇤ Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

(e) (3 points)

List<WhitePlayer> lst = new LinkedList<WhitePlayer>();
lst.add(Player.BLACK);
boolean ans = lst.contains(Player.BLACK);

⇤ Legal Code
A. The static type of lst is .
B. The dynamic class of lst is .
C. The value of ans is .

⇤ Not Legal — Will compile, but will throw an Exception when run
⇤ Not Legal — Will not compile

Reason for not legal (in either of the two illegal cases above):

PennKey: 7



5. Invariants (10 points)

The state of the connect four game is stored by the following instance variables in the class ConnectFour.
private Player[][] board; // the game board

private Player player; // current player

private Player winner; // null if no player has yet won

These instance variables are initialized by the start method, shown below.
public void start() {

board = new Player[ROWS][COLUMNS];
player = Player.WHITE;
winner = null;

}

The board is represented by a two-dimensional array that stores the locations of the players’ pieces, indexed
by their row number and column number. The current player is either Player.WHITE or Player.BLACK.
We also keep track of whether either player is the winner of the game.

For example, in the state shown in Figure 1 on page 5, player is equal to Player.BLACK, the game is
still in progress so winner is null, and board is equal to the 2D array shown below. (For conciseness we
write Player.WHITE as WHITE and Player.BLACK as BLACK).

new Player[][] {
{null, null, null, null, null, null, null},
{null, null, null, null, null, null, null},
{null, null, null, null, null, null, null},
{null, null, BLACK, null, null, null, null},
{null, null, BLACK, BLACK, null, null, null},
{WHITE, WHITE, BLACK, WHITE, WHITE, WHITE, null}};

Locations on the board are referenced by board[row][column]. For example, position board[5][0] con-
tains the WHITE player’s piece in the last (lowest) row and first (leftmost) column.

Which of the properties below would make good invariants for the ConnectFour class? (i.e., which
properties should be true after the instance variables have been initialized and throughout the execution of
the application?)

(a) True ⇤ False ⇤ board is never null

(b) True ⇤ False ⇤ winner is never null

(c) True ⇤ False ⇤ board[row] is never null for any 0 <= row < ROWS.

(d) True ⇤ False ⇤ board[row][col] is never null for any 0 <= col < COLUMNS

and 0 <= row < ROWS.

(e) True ⇤ False ⇤ If board[row][col] is not null, then for any k such that row < k < ROWS,
board[k][col] is not null.

8



6. 2D array Programming (15 points)

Complete the addPiece method of the ConnectFour class. This method should update the board with
a new piece for the current player in the specified column. For example, if called when the board is equal
to the sample board shown on page 8, and when the current player is Player.BLACK, this method should
update board[2][2] to Player.BLACK.

The method should return whether the new piece was successfully added. In the case that the specified
column is full, the method should return false. This method should only modify board—it should not
update player or winner.

public boolean addPiece (int col) {

}

Now think about the invariants that you checked “True” in the previous problem. Select one of these
invariants and describe how, if it did not hold, your implementation of addPiece could behave incorrectly.

Selected invariant: (a) ⇤ (b) ⇤ (c) ⇤ (d) ⇤ (e) ⇤
What could go wrong in addPiece if this invariant does not hold:

PennKey: 9



7. Iterators (15 points)

To check whether a player has won, we use the following methods to search for four pieces in a row
either horizontally (rows) or vertically (columns).

// check all arrays produced by the iterator for win by player p

public static boolean checkAll(Iterator<Player[]> it, Player p) {
while (it.hasNext()) {

Player[] arr = it.next();
if (checkFourInARow(arr, p)) {

return true;
}

}
return false;

}

// Check whether the current player has won the game

public boolean checkWin() {
if (checkAll(new RowIterator(), player)) { return true; }
return checkAll(new ColumnIterator(), player);

}

In the checkWin method, the classes RowIterator and ColumnIterator each implement the interface
Iterator<Player[]>, providing access to a sequence of arrays representing the individual rows and columns
respectively. For example, if the board is equal to the sample board on page 8, and the variable cit is a
newly-created instance of the ColumnIterator class, then the following JUnit test will pass:

Player[] column1and2 = {null, null, null, null, null, WHITE};
Player[] column3 = {null, null, null, BLACK, BLACK, BLACK};

assertArrayEquals(cit.next(), column1and2);
assertArrayEquals(cit.next(), column1and2);
assertArrayEquals(cit.next(), column3);

For this problem you will complete the ColumnIterator class, an inner class of ConnectFour, on the
next page. We have already declared and initialized the instance variable currColumn. You must complete
the hasNext and next methods and their behavior must match the description given by the documentation.
You may not define any additional class members (instance variables, constructors, or methods). HINT:
because this class is an inner class it has access to the board instance variable of ConnectFour.

(Complete the code on the next page. There is nothing to answer on this page.)

10



public class ColumnIterator implements Iterator<Player[]> {

private int currColumn = 0;

/** Returns true if the iteration has more elements. (In other words,

* returns true if next() would return an element rather than

* throwing an exception.)

*/

@Override public boolean hasNext() {

}
/** Returns the next element in the iteration.

* @throws NoSuchElementException if the iteration has no more elements

*/

@Override public Player[] next() {

}

PennKey: 11



8. Java True/False (15 points)

The following questions refer to the ConnectFour code shown in Appendix E.

(a) True ⇤ False ⇤ Line 58 is an example of the use of parametric polymorphism (i.e. generics).

(b) True ⇤ False ⇤ Line 85 is an example of the use of dynamic dispatch.

(c) True ⇤ False ⇤ Line 87 is an example of the use of dynamic dispatch.

(d) True ⇤ False ⇤ Line 96 is an example of the use of subtype polymorphism.

(e) True ⇤ False ⇤ Line 96 is an example of the use of parametric polymorphism (i.e. generics).

The following questions refer to the ConnectFour code shown in Appendix F.

(f) True ⇤ False ⇤ The type View is a subtype of Object.

(g) True ⇤ False ⇤ The class View is a subclass of ConnectFour.

(h) True ⇤ False ⇤ The methods and constructors in class View may refer to the private instance
variable color of class Player (Appendix D).

(i) True ⇤ False ⇤ The call to super.paintComponent on line 117 refers to a member of class
JPanel.

The following questions refer to the ConnectFour code shown in Appendix G and to the classes of the Java
Swing library. For reference, documentation for the Swing library appears in Appendix H.

(j) True ⇤ False ⇤ The class Mouse is a subclass of JPanel.

(k) True ⇤ False ⇤ The type Mouse is a subtype of MouseListener.

(l) True ⇤ False ⇤ The type MouseListener is a subtype of Object.

(m) True ⇤ False ⇤ The class Mouse inherits a method called mousePressed.

(n) True ⇤ False ⇤ The methods and constructors in class Mouse may refer to the private instance
variables of class ConnectFour.

(o) True ⇤ False ⇤ We can remove line 149 in Appendix G and the application would still work.

12



9. Exceptions and ActionListeners (15 points)

Suppose we would like to add a “save” button to the Connect Four game. Pressing this button should
record the current state of the game to a save file using the following method to be added in class ConnectFour
(the implementation of this method is not shown). If the game cannot be saved, this method throws an
IOException. In this case, the application should use the info label to display an error message to the user.

// write the game state to a file

// throws IOException if the file cannot be written to

public void saveGame() throws IOException {
// not shown

}

To implement the save button, we’ll add the following lines to Appendix G at at line 178.
JButton save = new JButton("save");
panel.add(save, BorderLayout.PAGE_END);

What should come next? Which of the following code blocks correctly add the action listener for the
save button. Check Yes if the code would work, or No if it either would not compile or would not implement
the desired behavior. There may be zero, one or more correct code blocks.

(a) ⇤ Yes ⇤ No

save.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {

try {
saveGame();

} catch (IOException io) {
info.setText("Cannot save game");

}
}

});

(b) ⇤ Yes ⇤ No

save.addActionListener(
try {

new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) throws IOException {
saveGame();

}
}

} catch (IOException io) {
info.setText("Cannot save game.");

});

PennKey: 13



(c) ⇤ Yes ⇤ No

save.addActionListener((ActionEvent e) -> {
try {

saveGame();
} catch (IOException io) {

info.setText("Cannot save game");
}

});

(d) ⇤ Yes ⇤ No

try {
save.addActionListener(new ActionListener() {

@Override
public void actionPerformed(ActionEvent e) {

saveGame();
}

});
} catch (IOException io) {

info.setText("Cannot save game.");
}

(e) ⇤ Yes ⇤ No

save.addActionListener((ActionEvent e) -> {
saveGame();
throw new IOException("Cannot save game.");

});

14


	OCaml Higher-Order Functions
	OCaml Queue Code
	Java Docs: [language=Java,backgroundcolor=white]class LinkedList<E> implements List<E> (excerpt)
	ConnectFour: Player classes
	ConnectFour: Game Logic (Model)
	ConnectFour:View inner class
	ConnectFour:Mouse inner class and Constructor
	Swing library documentation
	Java Docs: [language=Java,backgroundcolor=white]MouseAdapter class (excerpt)
	Java Docs: [language=Java,backgroundcolor=white]JPanel class (excerpt)
	Java Docs: [language=Java,backgroundcolor=white]JButton class (excerpt)
	Java Docs: [language=Java,backgroundcolor=white]ActionListener interface (excerpt)


