
CIS 1200 Final Exam December 17, 2024
Benjamin C. Pierce and Swapneel Sheth, instructors

Name:

PennKey (penn login, e.g., bcpierce):

PennID (the “numbers”, e.g., 12001200):

I certify that I have complied with the University of Pennsylvania’s Code of Academic Integrity in
completing this examination.

Signature: Date:

• Please wait to begin the exam until you are told it is time for everyone to start.

• When you begin, start by writing your PennKey at the bottom of all the odd-numbered pages
in the rest of the exam.

• There are 120 total points. The time for the exam is 120 minutes.

• You may use one letter-sized, two-sided, handwritten sheet of notes during the exam.

• For coding problems, aim for accurate syntax, but we will not grade your code for indenta-
tion, spacing, etc.

• There are 19 pages in the exam and an appendix for your reference. Do not write any answers
in the appendix as they will not be graded.

• Do not spend too much time on any one question. Be sure to recheck all of your answers.

• If you need extra space for an answer, you may use the scratch page at the end of the exam;
make sure to clearly indicate that you have done this in the normal answer space for the
problem.

• Good luck!

1



1. OCaml Concepts (11 points total)

Indicate whether the following statements are true or false.

(a) True ⇤ False ⇤
(1 points) In OCaml, if s = t returns true, then s == t is guaranteed to return true.

(b) True ⇤ False ⇤
(1 points) In OCaml, if s == t returns true, then s = t is guaranteed to return true.

(c) True ⇤ False ⇤
(1 points) In OCaml, if x is a variable of any type, Some x == Some x will always return
true.

(d) True ⇤ False ⇤
(1 points) In our OCaml ASM, the local variables of a recursive function are stored on the
heap, whereas those of a non-recursive function are stored on the stack.

(e) True ⇤ False ⇤
(1 points) In the OCaml ASM, a closure is used to save a copy of all mutable variables on
the heap so that they can be restored later if an exception is thrown.

(f) True ⇤ False ⇤
(1 points) In OCaml, all infinite loops will eventually trigger a Stack_overflow runtime
error.

(g) True ⇤ False ⇤
(1 points) In OCaml, if the heap ever contains a cycle (where following one or more pointers
brings us back to where we started from), then the program that created this heap must involve
mutable state.

(h) True ⇤ False ⇤
(1 points) One advantage of the imperative programming style compared to functional pro-
gramming with no mutable references is that reasoning about the imperative style relies on a
simpler formulation of the ASM.

(i) True ⇤ False ⇤
(1 points) The higher-order transform function in OCaml is more fundamental than fold,
in the sense that any computation that can be expressed as a call to fold can instead be
expressed as a call to transform.

2



(j) True ⇤ False ⇤
(2 points) The following OCaml function is tail recursive:

let rec lookup (x: ’a) (t: ’a tree) : bool =

begin match t with
| Empty -> false
| Node (lt, v, rt) ->

if v = x then true
else if x < v then lookup x lt

else lookup x rt

end

PennKey: 3



2. OCaml Lists, Trees, and Recursion (19 points total)

Consider this list function:
let rec foo (n: int) (lst: int list) : bool list =

begin match lst with
| [] -> []

| x::xs -> (x > n) :: (foo n xs)

end
let ans = foo 3 [2;3;4]

2.1 (2 points) What is the value computed for ans in the code above?

ans =

2.2 (3 points) Recall the definition of the list function transform.
let rec transform (f: ’a -> ’b) (l: ’a list) : ’b list =

begin match l with
| [] -> []

| x::xs -> (f x) :: transform f xs

end

Which of the following correctly implements the function foo using transform?
(Mark all that apply.)

⇤ let foo (n: int) (lst: int list) : bool list =

transform (fun x -> (x > n) :: xs) lst

⇤ let rec foo (n: int) (lst: int list) : bool list =

transform (fun x -> foo n xs) lst

⇤ let foo (n: int) (lst: int list) : bool list =

transform (fun x -> x > n) lst

⇤ let foo (n: int) (lst: int list) : bool list =

transform (fun x -> x > n)

4



Consider this list function:
let rec m (lst: bool list) : int =

begin match lst with
| [] -> 0

| x::xs -> 2*(m xs) + (if x then 1 else 0)

end
let ans = m [true; false; true]

2.3 (2 points) What is the value computed for ans in the code above?

ans =

2.4 (3 points) Recall the definition of the list function fold.
let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =

begin match l with
| [] -> base

| x::xs -> combine x (fold combine base xs)

end

Which of the following correctly implements the function m using fold? (Mark all that apply.)

⇤ let m (lst: bool list) : int =

fold (fun x acc -> 2*x + (if acc then 1 else 0)) 0 lst

⇤ let m (lst: bool list) : int =

fold (fun x acc -> 2*acc + (if x then 1 else 0)) 0 lst

⇤ let m (lst: bool list) : int =

fold (fun x acc -> if x then 1 else 0) (2*acc) lst

⇤ let rec m (lst: bool list) : int =

fold (fun x acc -> 2*(m acc) + (if x then 1 else 0)) 0 lst

PennKey: 5



Recall the definition of the type of generic binary trees:
type ’a tree =

| Empty

| Node of ’a tree * ’a * ’a tree

2.5 (4 points) The following function, called tree_fold is the binary tree analogue of fold: it
abstracts the recursion pattern into a generic function. We have left off the type annotations
for the combine and base parameters—fill in those blanks so that they are consistent with the
given code.

let rec tree_fold (combine: _____________________________________________)

(base: ________________________________________________)

(t: ’a tree) : ’b =

begin match t with
| Empty -> base

| Node(lt, x, rt) ->

combine x

(tree_fold combine base lt)

(tree_fold combine base rt)

end

6



Consider this tree function:
let rec f (t: int tree) : int =

begin match t with
| Empty -> 0

| Node(lt, x, rt) -> 0 + x + (f rt)

end
let leaf3 = Node(Empty, 3, Empty)

let leaf4 = Node(Empty, 4, Empty)

let ans = f (Node(leaf3, 3, leaf4))

2.6 (2 points) What is the value computed for ans in the code above?

ans =

2.7 (3 points) Which of the following correctly implements the function f using tree_fold?
(Mark all that apply.)

⇤ let rec f (t: int tree) : int =

tree_fold (fun lt x rt -> 0 + x + (f rt)) 0 t

⇤ let f (t: int tree) : int =

tree_fold (fun lacc x racc -> 0 + racc) 0 t

⇤ let f (t: int tree) : int =

tree_fold (fun x lacc racc -> 0 + x + racc) 0 t

⇤ let f (t: int tree) : int =

tree_fold (fun lacc x racc -> 0 + x + racc) 0 t

PennKey: 7



3. Java Concepts (8 points total)

Indicate whether the following statements are true or false.

(a) True ⇤ False ⇤
(1 points) In Java, a static method gets passed an implicit this parameter.

(b) True ⇤ False ⇤
(1 points) In Java, the @Override annotation prevents accidental overloading of a method.

(c) True ⇤ False ⇤
(1 points) In Java, it is possible to catch an unchecked exception (such as a
NullPointerException) using a try-catch block.

(d) True ⇤ False ⇤
(1 points) In Java, if A is a subtype of B, then Set<A> is also a subtype of Set<B>.

(e) True ⇤ False ⇤
(1 points) In Java, String objects are immutable. Once they’re created, their size and con-
tents cannot be changed.

(f) True ⇤ False ⇤
(1 points) In the Java ASM, references are pointers to objects stored in the heap or on the
stack.

(g) True ⇤ False ⇤
(1 points) The dynamic class of an object is always a subtype of the static type of any
expression whose evaluation yields this object.

(h) True ⇤ False ⇤
(1 points) The variables p and q are aliases when the following program’s execution reaches
the line marked “HERE”. (Assume that ColoredPoint is a subclass of Point.)

Point p = new Point(1, 2);

Point q = new ColoredPoint(1, 2, Red);

p = q;

// HERE

8



4. Java Collections (10 points total)

You are designing data structures to store the information needed for a Recording Studio. Choose
the most appropriate data structure to keep track of the information below.

4.1 (2.5 points) Which data structure would be best to keep track of the names of all the instru-
ments available for use at a recording studio so that we can quickly check if a particular
instrument is available? (Select one.)

⇤ TreeSet<String>

⇤ LinkedList<String>

⇤ TreeMap<Integer, String>

4.2 (2.5 points) Which data structure would be best to keep track of all the albums recorded by a
specific artist? Each album should be accessible by name (you can assume that the name is
unique) and all its songs should be stored so that they can be played in order. (Select one.)

⇤ TreeSet<String>

⇤ LinkedList<String>

⇤ LinkedList<TreeMap<String, String>>

⇤ TreeMap<String, LinkedList<String>>

⇤ TreeSet<LinkedList<String>>

⇤ TreeSet<TreeMap<String, String>>

4.3 (2.5 points) Each chord in a guitar chord chart can contain multiple notes. In a given chord,
each note is a unique string ("A", "B#", "Cb", etc.), and their order doesn’t matter. Which
data structure would be best to store a song broken down by chords, with each chord storing
its constituent notes? (Select one.)

⇤ TreeSet<TreeSet<String>>

⇤ TreeSet<LinkedList<String>>

⇤ TreeMap<TreeSet<String>, TreeSet<String>>

⇤ TreeMap<LinkedList<String>, LinkedList<String>>

⇤ TreeMap<LinkedList<String>, Integer>

⇤ LinkedList<TreeSet<String>>

PennKey: 9



4.4 (2.5 points) Which data structure would be best to keep track of the names of all the concert
venues in each city and how many people each venue can fit? All concert venues within a
city should be accessible via the city’s name, and we should be able to add new venues to any
given city. Additionally, we should be able to update the capacity of a given venue. (Select
one.)

⇤ TreeSet<TreeMap<String, Integer>>

⇤ TreeMap<String, TreeMap<String, Integer>>

⇤ TreeMap<String, TreeSet<String>>

⇤ TreeSet<LinkedList<String>>

⇤ LinkedList<TreeMap<String, Integer>>

⇤ TreeMap<String, TreeSet<Integer>>

10



5. Inheritance and Overriding (14 points total)

Consider the Java class declarations shown in Appendix A.

For each code snippet below, indicate what string will get printed to the console, or mark “Ill
typed” if the snippet has a type error.

5.1 (2 points) B x = new B();

x.print1();

⇤ A’s print1 ⇤ B’s print2 ⇤ C’s print1 ⇤ Ill typed

5.2 (2 points) A y = new B();

y.print1();

⇤ A’s print1 ⇤ B’s print2 ⇤ C’s print1 ⇤ Ill typed

5.3 (2 points) A q = new B();

q.print2();

⇤ A’s print1 ⇤ B’s print2 ⇤ C’s print1 ⇤ Ill typed

5.4 (2 points) C z = new C();

z.print1();

⇤ A’s print1 ⇤ B’s print2 ⇤ C’s print1 ⇤ Ill typed

5.5 (2 points) A v = new B();

v.callPrint();

⇤ A’s print1 ⇤ B’s print2 ⇤ C’s print1 ⇤ Ill typed

5.6 (2 points) C w = new C();

w.callPrint();

⇤ A’s print1 ⇤ B’s print2 ⇤ C’s print1 ⇤ Ill typed

5.7 (2 points) A u = new C();

u.callPrint();

⇤ A’s print1 ⇤ B’s print2 ⇤ C’s print1 ⇤ Ill typed

PennKey: 11



6. Java Exceptions (13 points)
The code below defines three methods, m1, m2, and m3, that throw and catch exceptions ExnA

and ExnB (two newly declared runtime exceptions that have no relationship with each other). If
we start with a call to m1(), some of the calls to System.out.println will get executed, while
others will not. Please mark the appropriate box next to each of these calls to indicate whether the
corresponding string will or will not get printed (i.e., put an X inside the ⇤ before either Printed
or Not printed).
class ExnA extends RuntimeException { }

class ExnB extends RuntimeException { }

static void m1() {

System.out.println("begin m1"); // ⇤ Printed ⇤ Not printed

try {

System.out.println("calling m2"); // ⇤ Printed ⇤ Not printed

m2();

System.out.println("returned from m2"); // ⇤ Printed ⇤ Not printed

} catch (ExnA e) {

System.out.println("m1 caught ExnA"); // ⇤ Printed ⇤ Not printed

} catch (ExnB e) {

System.out.println("m1 caught ExnB"); // ⇤ Printed ⇤ Not printed

}

System.out.println("end m1"); // ⇤ Printed ⇤ Not printed

}

static void m2() {

System.out.println("begin m2"); // ⇤ Printed ⇤ Not printed

try {

System.out.println("calling m3"); // ⇤ Printed ⇤ Not printed

m3();

System.out.println("returned from m3"); // ⇤ Printed ⇤ Not printed

} catch (ExnA e) {

System.out.println("m2 caught ExnA"); // ⇤ Printed ⇤ Not printed

System.out.println("about to throw ExnB"); // ⇤ Printed ⇤ Not printed

throw new ExnB();

} catch (ExnB e) {

System.out.println("m2 caught ExnB"); // ⇤ Printed ⇤ Not printed

}

System.out.println("end m2"); // ⇤ Printed ⇤ Not printed

}

static void m3() {

System.out.println("begin m3"); // ⇤ Printed ⇤ Not printed

try {

System.out.println("about to throw ExnA"); // ⇤ Printed ⇤ Not printed

throw new ExnA();

} catch (ExnB e) {

System.out.println("m3 caught ExnB"); // ⇤ Printed ⇤ Not printed

}

System.out.println("end m3"); // ⇤ Printed ⇤ Not printed

}

12



7. Iterators (27 points total)

In this problem, you will use the design process from class to implement a Java class called
BufferedIterator. Read through Steps 1 and 2 below, then complete Steps 3 and 4.

Step 1: Understand the problem Recall that an iterator is an object that yields a sequence of
elements. However, one issue with the iterator interface is that there is no way to peek at the next
object without returning it.

For example, suppose one wanted a method that would advance an integer iterator so that it skips
over all negative numbers. Although the following definition might seem reasonable, it has the
wrong behavior. When given an iterator, it skips over any initial negative numbers produced by the
iterator, but it also skips over the first non-negative number.
void skipNegativeWRONG(Iterator<Integer> it) {

while (it.hasNext() && it.next() < 0) { }

}

A buffered iterator would solve this problem by being able to peek at the next number in the
iteration, without advancing the iterator. That way, only the negative numbers can be skipped.
void skipNegative(BufferedIterator<Integer> it) {

while (it.hasNext() && it.peek() < 0) {

it.next();

}

}

Step 2: Design the interfaces The Javadocs for the Iterator<E> interface are given in Ap-
pendix B. In this problem you will develop a generic BufferedIterator class that implements
this interface.

The constructor of this class should take another iterator as an argument and add “buffering”, i.e.
the ability to peek ahead to the next value, without advancing the iterator. The constructor of this
class should have the following declaration.
public BufferedIterator(Iterator<E> i)

If i, the provided iterator, is null, the BufferedIterator constructor should throw an
IllegalArgumentException.

The peek operation should have the same interface as the next method. The only difference is that
it shouldn’t advance the iterator when called. If there is no element to return from peek, then the
iterator should throw a NoSuchElementException.
public E peek()

(There are no questions for you on this page.)

PennKey: 13



(a) (5 points) Suppose you are given an iterator for a list that contains only the value 1, and no
other numbers. What test cases could you write for an instance of the BufferedIterator

class constructed from this iterator?
Describe, in words, five different tests for such an instance, called b. You may assume that
each test starts with a fresh definition of b. Your description of the test must be specific,
describing either the outputs of methods in the BufferedIterator class or any exceptions
that could be thrown. For example, one test case that you might include is “two successive
calls of b.peek() both return 1.”
You will be graded on the correctness and comprehensiveness of your test cases. We want
five good tests in addition to the example above. Each test must be non-overlapping, which
means it tests a different part of the functionality.

#1:

#2:

#3:

#4:

#5:

(b) (2 points) Choose one of your tests above (tell us which one by circling its number above)
and complete the implementation below.
@Test

public void test(){

List<Integer> list = new LinkedList<Integer>();

list.add(1);

BufferedIterator<Integer> b =

new BufferedIterator<Integer>(list.iterator());

// Finish the test...

}

14



Step 4: Implementation (20 points)

Complete the implementation of the BufferedIterator class on the next page. We have provided
you with the implementation of the constructor for this class. Do not modify this definition.
If you need more space for any of your answers, you may use the scratch space on page 19.

Note: You may assume that appropriate import statements bring Iterator and NoSuchElementException

into scope; we omit them to save space. You may not use any additional classes or libraries,
nor add any import statements to your solution.
Hint: You might want to think about test cases other than the ones you wrote for b on the previous
problem. Are there any other iterators that you might need to consider?

Hint: We have declared a helper method called advance() that you can use to move your iterator
forward to the next result (if any). Complete this method as you see fit. This method is used in the
definition of the BufferedIterator constructor that we have provided for you. You may also use
advance in your new code, as appropriate.

(There is nothing for you to answer on this page.)

PennKey: 15



public class BufferedIterator<E> implements Iterator<E> {

private Iterator<E> it;

private E nextElement;

// Additional fields if needed:

public BufferedIterator(Iterator<E> i) {

if (i == null) { throw new IllegalArgumentException(); }

this.it = i;

advance();

}

private void advance() { // Complete:

}

public boolean hasNext() { // Complete:

}

public E next() { // Complete:

}

public E peek() { // Complete:

}

}

16



8. Java Swing Programming (18 points total)

Appendix D shows code for an implementation of a “Cookie Clicker” game in Java. Each time the
cookie is clicked, the counter is incremented and the updated value is shown. The image below
shows the GUI after a few clicks.

The following questions test your understanding of both Java and Swing programming idioms:

8.1 (2 points) On line 28, calling super.paintComponent(g) invokes the constructor of the
JPanel class.

True ⇤ False ⇤

8.2 (2 points) How many occurrences of the new keyword in the CookiePanel class correspond
to anonymous inner classes? (Select one.)

⇤ 0
⇤ 1
⇤ 2
⇤ 3

PennKey: 17



8.3 (2 points) How will the program’s behavior change if we delete the call to repaint() on
line 15? Assume we do not resize the display window manually. (Select one.)

⇤ Nothing at all will ever be displayed – just a blank window.
⇤ The initial GUI will be displayed, but the next time the canvas is clicked, the screen will

become blank.
⇤ The initial GUI will be displayed. Clicking the cookie will not update the internal

clickCount and the counter display will never change.
⇤ The initial GUI will be displayed. Clicking the cookie will update the internal clickCount.

The counter display may or may not change, depending on decisions Swing makes in-
ternally and other interactions with the display.

⇤ No change in behavior.

8.4 (2 points) Which of the following statements are true? (Mark all that apply.)

⇤ CookiePanel is a subtype of JPanel and can itself contain other components.
⇤ JFrame is a container component that can contain multiple components.
⇤ The CookiePanel is added to the JFrame.
⇤ The JFrame is added to the CookiePanel.

8.5 (2 points) What would happen if we changed 250 to 150 on line 35—i.e., changed the whole
line to g.drawString("Clicks: "+ clickCount, 120, 150)? (Select one.)
(Hint: The second and third arguments to the drawString() method are the x and y coordi-
nates, respectively, for where the string should be drawn.)

⇤ The cookie would be drawn on top of the counter.
⇤ The counter would be drawn on top of the cookie.
⇤ The counter would appear to the right of the cookie.
⇤ The counter would appear to the left of the cookie.

8.6 (2 points) What would happen if we declared the clickCount variable in CookiePanel as
static? (Select one.)

⇤ The counter will start at the previous value of clickCount every time the game restarts.
⇤ The counter will increment for each click, as before, but repainting will stop working.
⇤ The program will not compile.
⇤ No change in behavior.

18



8.7 (6 points) Modify the CookiePanel class to add a “Reset” button that resets the click count
to 0. Write a code snippet below to add the button and handle the reset action. Assume your
code is inserted after line 18.
The methods of the JButton class are summarized in Appendix C.

JButton resetButton =

PennKey: 19



Scratch Space

Use this page for work that you do not want us to grade. If you run out of space elsewhere in the
exam and you do want to put something here that we should grade, make sure to put a clear note
in the normal answer space for the problem in question.

20


	Java classes for Inheritance and Overriding
	Java [backgroundcolor=white]Iterator<E> interface
	Java [backgroundcolor=white]JButton methods
	Java Code for ``Cookie Clicker''

