
CIS 1200 Midterm I September 29, 2023
Steve Zdancewic and Swapneel Sheth, instructors

Name:

PennKey (penn login id, e.g., stevez):

I certify that I have complied with the University of Pennsylvania’s Code of Academic Integrity in
completing this examination.

Signature: Date:

• Please wait to begin the exam until you are told it is time for everyone to start.

• When you begin, please start by writing your PennKey at the bottom of all the odd-numbered
pages in the rest of the exam.

• There are 120 total points. The exam length is 60 minutes.

• For coding problems: aim for accurate syntax, but we will not grade your code style for
indentation, spacing, etc.

• There are 10 pages in the exam and an Appendix for your reference. Please do not submit
the Appendix.

• Do not spend too much time on any one question. Be sure to recheck all of your answers.

• Good luck!

1

1. Binary (Search) Trees (26 points total)

(a) (14 points) Write a function convert_tree that given a binary tree t and an integer n:

• First, adds that n to the value of the root node, if it exists.
• Second, adds the old node value to the right child node and subtracts the old node

value from the left child node.
• Applies the second step recursively to the entire tree.

For example, given the original tree below and n = 4, after applying the function,
the converted tree would look like this.

let original : int tree = 3
/ \

4 1
/ / \
5 8 12

let converted : int tree = 7
/ \

1 4
/ / \
1 7 13

Now, implement the function:
let rec convert_tree (t: int tree) (n: int) : int tree =

__

__

__

__

__

(b) (4 points) Does convert_tree preserve the BST invariants? (I.e., if the input tree t

were a BST, would the output tree always be a BST?)
2 Yes 2 No
If yes, explain why. If no, provide a counter-example.

2

You will be given a pair of Binary Search Trees (original and updated). Start with
the original tree and using a series of inserts and deletes create the updated tree.
For each part:

• Start with the innermost parenthesis.
• You can call insert and delete a maximum of 2 times each.
• You may not need to use all the blanks provided.

The code for insert and delete is available in Appendix A.

We’ve done the first one for you.

original updated
4 4
/ \ / \
2 8 2 5

Answer: ((insert (delete original 8) 5))

(c) (4 points)

original updated
3 3
/ \ \
2 5 4

/ \ \
4 7 7

\
8

Answer: (((original)))

(d) (4 points)

original updated
5 5
/ \ / \
2 8 4 8
/ \ \ / \
1 4 10 2 10

Answer: (((original)))

PennKey: 3

2. List Processing and Higher Order Functions (26 points total)

Recall the higher-order list processing functions shown in Appendix B.

For these problems do not use any list library functions. Constructors, such as :: and [], are
fine.

(a) (7 points) Use transform and/or fold, along with suitable anonymous function(s),
to implement a function divided_by_5 that takes in an int list and returns a tuple
where the first element is the number of elements that can be divided by 5 and the
second element is a list of those numbers.
For example, the call divided_by_5 [1; 15; 20; 4] evaluates to (2, [15; 20]).

let divided_by_5 (l: int list) : int * int list =

__

__

__

__

(b) (7 points) Use transform and/or fold, along with suitable anonymous function(s), to
implement a function dupl_predicate that takes in a predicate of the type 'a -> bool

and a 'a list and returns a new list where elements that match the predicate are du-
plicated and elements that don’t remain as singular elements.
For example, the call dupl_predicate (fun x -> x > 5) [1; 7; 6; 2; 8]

evaluates to [1; 7; 7; 6; 6; 2; 8; 8]

let dupl_predicate (pred: 'a -> bool) (l: 'a list) : 'a list =

__

__

__

__

4

(c) (12 points) Use transform and/or fold, along with suitable anonymous function(s),
to implement a function multiplier that takes in a list whose elements are of type
int * (int list) where the first element of the tuple is a multiplier and the second
element of the tuple is a list of integers. multiplier will return a list of lists where
each number in a list is multiplied by its corresponding multiplier.
For example, the call
multiplier [(2, [1; 2; 3]); (-3, [2; 3; 4]); (0, [3; 2; 1])]

evaluates to [[2; 4; 6]; [-6; -9; -12]; [0; 0; 0]].

let multiplier (l: (int * (int list)) list) : int list list =

__

__

__

__

__

PennKey: 5

3. Types (24 points total)

For each OCaml value below, fill in the missing type annotations or else write “ill typed” if
there is no way to fill in the annotation that does not cause a type error.

Your answer should be the most generic type that OCaml would infer for the value–—i.e.,
if int list and bool list are both possible types of an expression, you should write
'a list.

Some of these expressions refer to the types and functions defined in Appendix A, B, and C.

We’ve done the first one for you.
let example: int list = [3; 1]

(4 points each)

(a)
let a: _____________________________ = "h"::"e"::"l"::"l"::["o"]

(b)
let b: _____________________________ = (5, [1; 2; 3; 4])

(c)
let c: _____________________________ = [(fun x -> x + 5); (fun x -> 120)]

(d)
let d: _____________________________ = transform (fun y -> y + 3)

(e)
let e: _____________________________ = begin match [true; false; true] with

| [] -> true
| hd::tl -> hd || hd + 5
end

(f)
let f: _____________________________ = fun x -> Node (Empty, x, Empty)

6

4. Abstract Data Types & The Design Process (44 points total)
Disney is looking to make their queue process more automated. To do so, they decide to
create a queue system that prioritizes fast-pass customers over regular customers.
To model this situation in code, we create an abstract data type with operations enq, which
adds a value to the queue, and deq, which returns the next value (if any) along with an
updated queue. The elements of the queue are dequeued in the order in which they are
enqueued except that fast-pass values always come before regular ones. Whether a value is
to be considered “fast-pass” or “regular” is indicated by a bool argument to enq (true means
“fast”). The data type will also need an empty value and support a to_list operation, which
returns the list of values in the order they will be dequeued.

a. We now consider how to define the signature of this DISNEYQUEUE abstract type. We can
characterize the possible designs as:

• Unimplementable: no well-typed struct implementation could satisfy the interface:
any implementation would have to raise an error (e.g., failwith) or infinitely loop

• Unusable: implementable, but lacking functionality: no client code could usefully call
functions of the interface to achieve a non-trivial result

• Unsafe: implementable and usable, but that doesn’t ensure implementation invariants
are preserved: the client can provide inputs that break implementation invariants

• Good: implementable, usable, and able to enforce invariants

For each of the following signatures, mark the box next to the characterization that best
describes it. Additionally, if it is not “Good”, briefly describe why you chose that choice.
Use each characterization exactly once!

(a) (4 points)

module type DISNEYQUEUE = sig
type 'a disney_queue = ('a * bool) list (* see Note *)

val empty : 'a disney_queue
val deq : 'a disney_queue -> 'a * 'a disney_queue
val enq : 'a disney_queue -> 'a -> bool -> 'a disney_queue
val to_list : 'a disney_queue -> 'a list

end

2 Unimplementable 2 Unusable 2 Unsafe 2 Good

Note: the presence of type 'a disney_queue = ('a * bool) list in the signature
reveals the definition of the type to client code.

Explanation:

PennKey: 7

(b) (4 points)

module type DISNEYQUEUE = sig
type 'a disney_queue
val empty : 'a disney_queue
val deq : 'a disney_queue -> 'a * 'a disney_queue
val enq : 'a disney_queue -> 'a -> bool -> 'a disney_queue
val to_list : 'a disney_queue -> 'a list

end

2 Unimplementable 2 Unusable 2 Unsafe 2 Good

Explanation:

(c) (4 points)

module type DISNEYQUEUE = sig
type 'a disney_queue
val deq : 'a disney_queue -> 'a * 'a disney_queue
val enq : 'a disney_queue -> 'a -> bool -> 'a disney_queue
val to_list : 'a disney_queue -> 'a list

end

2 Unimplementable 2 Unusable 2 Unsafe 2 Good

Explanation:

(d) (4 points)

module type DISNEYQUEUE = sig
type 'a disney_queue
val empty : 'a disney_queue
val deq : 'a disney_queue -> 'b * 'b disney_queue
val enq : 'a disney_queue -> 'a -> bool -> 'b disney_queue
val to_list : 'a disney_queue -> 'b list

end

2 Unimplementable 2 Unusable 2 Unsafe 2 Good

Explanation:

8

b. (4 points) Now we can write test cases that check the desired properties of our DISNEYQUEUE
abstract type. One (correct) example test is shown below:

let test () =
let q1 = enq empty 1 false in
let q2 = enq q1 2 true in
let (r1, q3) = deq q2 in
let (r2, q4) = deq q3 in
r1 = 2 && r2 = 1 && is_empty q4

;; run_test "1 slow then 2 fast" test

Now, fill in the blank below such that the following code is another good test:
let test () =

let q1 = enq empty 1 false in
let q2 = enq q1 2 true in
let q3 = enq q2 3 true in
let q4 = enq q3 4 false in
to_list q4 =

;; run_test "to_list test" test

c. There are many possible ways to implement the DISNEYQUEUE interface.

(2 points) For each possible representation type labeled A–D below, mark the box if it can
be used to provide a Good implementation. (At least one is good, but more than one might
be.)
module DQ_Impl : DISNEYQUEUE = struct

type 'a disneyqueue = (* GOOD? *)

(* A *) 'a list * bool []
(* B *) 'a list * 'a list []
(* C *) 'a list * int []
(* D *) 'a set []

(* ... other definitions omitted will use that representation ... *)

end

(6 points) Now, pick one of the Good representations above and explain (briefly) what rep-
resentation invariant your code could use to implement DISNEYQUEUE for that type.

Type:
Invariant:

PennKey: 9

d. (16 points) One way to represent a DISNEYQUEUE (different from above) is through a list,
where each element in the list is a tuple of the value (i.e., customer) and a bool flag that
indicates whether they are a fast-pass (true) or regular customer (false). The struct for
such an implementation is provided in Appendix C.

For such an implementation, we establish the invariant that for any disney_queue, the fast-
pass customers are at the front of the list, while the regular customers at the back of the list.
Additionally, the relative ordering of fast-pass and regular customers should be maintained.

(a) Now implement the enq function yourself. Recall that the enq function seeks to add the
item v to the queue while maintaining invariants and relative ordering.
Note: for full credit, your solution must leverage the invariants and short-circuit (ter-
minate earlier than the end of the list) if possible. Solutions that do not will receive
partial credit.

let rec enq (q: 'a disney_queue) (v: 'a) (fast: bool) : 'a disney_queue =

10

