
CIS 1200 Midterm I February 10th, 2023

Name (printed):

PennKey (penn login id):
I certify that I have complied with the University of Pennsylvania’s Code of Academic Integrity in
completing this examination.

Signature: Date:

• Please wait to begin the exam until you are told it is time for everyone to start.

• When you begin, please start by writing your username (a.k.a. PennKey, e.g., stevez)
clearly at the bottom of the indicated pages.

• There are 120 total points. The exam length is one hour.

• This exam is closed book. Do not collaborate with anyone else when completing this exam.

• For coding problems: aim for accurate syntax, but we will not grade your code style for
indentation, spacing, etc.

• There are 11 pages in the exam and an Appendix for your reference. You may (carefully!)
tear off the appendix for ease of reference. You do not need to submit the Appendix.

• Do not spend too much time on any one question. Be sure to recheck all of your answers.

• The last page of the exam can be used as scratch space. By default, we will ignore anything
you write on this page. If you write something that you want us to grade, make sure you mark
it clearly as an answer to a problem and write a clear note on the page with that problem
telling us to look at the scratch page.

• Good luck!

1



1. OCaml Programming and List Recursion (20 points total)

(12 points) For each program below, fill in the blank with the value computed for ans by
running the following expressions (all of which are well-typed).

(a)
let ans : int =
let x = 3 + 5 in
let x = 4 + x in x

ans : int =

(b)
let rec foo (l:int list) : int =

begin match l with
| [] -> 0
| x::xs -> 1 + x + (foo xs)

end
let ans : int = foo [1;2;3]

ans : int =

(c)
let rec foo (l:int list) : int list =
begin match l with

| [] -> [0]
| x::xs -> 0::foo xs

end
let ans : int list = foo [1;2;3]

ans : int list =

(d) (8 points) Implement a function that uses list recursion to count the number of occurrences
of the given argument n that appear in the list l. We have given you some test cases to
demonstrate the desired behavior; a correct implementation will pass them all.
let rec count_of (n:int) (l:int list) : int =

begin match l with

| __________ -> ________________

| __________ -> _________________________________

_________________________________
end

let test () = count_of 3 [] = 0
;; run_test "count_of 3 [] = 0" test

let test () = count_of 3 [3] = 1
;; run_test "count_of 3 [3] = 1" test

let test () = count_of 3 [1;2;3;3;2;3] = 3
;; run_test "count_of 3 [1;2;3;3;2;3] = 3" test

2



2. Higher-order Functions and Type Checking (15 points)

For your reference, Appendix A contains the code for the standard transform and fold

higher order functions from lecture, which you should consider to be in scope for this prob-
lem. Consider the following definitions also to be in scope:
let sum (x:int) (y:int) = x + y
let mul (x:int) (y:int) = x * y
let max (x:int) (y:int) = if x > y then x else y
let min (x:int) (y:int) = if x > y then y else x

let fs = [sum; mul; max; min]

let rec apply_list (fs:(’a -> ’b) list) (l:’a list) : ’b list =
begin match fs,l with

| g::gs,x::xs -> (g x)::(apply_list gs xs)
| _,_ -> []

end

(3 points each) Indicate the type of each expression below (they are all well typed).

(a) [1; 2; 3]

2 int 2 int list 2 (int -> int) list

2 (int -> int -> int) list 2 ((int -> int) -> int) list

(b) fs

2 int 2 int list 2 (int -> int) list

2 (int -> int -> int) list 2 ((int -> int) -> int) list

(c) fold max 0 [2;4;1;3]

2 int 2 int list 2 (int -> int) list

2 (int -> int -> int) list 2 ((int -> int) -> int) list

(d) transform sum [1;2;3;4]

2 int 2 int list 2 (int -> int) list

2 (int -> int -> int) list 2 ((int -> int) -> int) list

(e) apply_list (apply_list fs [1;2;3;4]) [5;6;7;8]

2 int 2 int list 2 (int -> int) list

2 (int -> int -> int) list 2 ((int -> int) -> int) list

PennKey: 3



3. Higher-order Functions (16 points)

(4 points each) For each of the following list-processing functions indicate how it might be
implemented using fold or transform. In each case, choose one option.

(a)
let rec list_max (l:int list) : int =

begin match l with
| [] -> failwith "no max"
| x::[] -> x
| x::xs -> max x (list_max xs)

end

2 must be implemented using fold

2 can be implemented using transform (and so also fold)
2 cannot be implemented using either transform or fold

(b)
let rec list_str (l:int list) : string list =

begin match l with
| [] -> []
| x::xs -> (string_of_int x)::(list_str xs)

end

2 must be implemented using fold

2 can be implemented using transform (and so also fold)
2 cannot be implemented using either transform or fold

(c)
let rec list_mul (l:int list) : int =

begin match l with
| [] -> 1
| x::xs -> x * (list_mul xs)

end

2 must be implemented using fold

2 can be implemented using transform (and so also fold)
2 cannot be implemented using either transform or fold

(d)
let rec zip (l1 : ’a list) (l2 : ’b list) : (’a * ’b) list =
begin match (l1, l2) with

| (x::xs, y::ys) -> (x,y)::zip xs ys
| (_, _) -> []

end

2 must be implemented using fold

2 can be implemented using transform (and so also fold)
2 cannot be implemented using either transform or fold

4



4. Abstract Types: Ordered Multisets
In this series of questions we use the design process to implement an abstract type called an
ordered multiset (OMSET). An ordered multiset is a collection of data elements, such as strings
or integers. Unlike the SET abstract type from Homework 3, an OMSET may contain multiple
occurrences of the same element and the elements are sorted (ascending) sequentially.

Step 1: Understand the problem As an example, suppose we wanted to do a statistical
analysis of the scores for CIS 1200 exams. A small part of that data set might be given by
the list: [72; 85; 85; 85; 93; 93; 99]

While a list is one way to represent exam scores, it may not be the most efficient for some
purposes. For instance, when working with such data, it might be convenient to get the count
of a given score, which is the number of times it occurs in the collection. So in the data above,
the count of 85 is 3, the count of 99 is 1, and the count of any value, like 17, not in the list,
is 0. Calculating the count using a list representation can take time proportional to the length
of the list, so we would like to do better.

We may also want to efficiently determine the size of the collection as a whole. In the
list representation, the size is just the length of the list, but computing that also takes time
proportional to the length.

We also want to efficiently compute the nth element of the data set (indexed from 0). The
element at index 0 in the data above is 72; index 3 is 85, while the 99 has index 6. With a list
representation, nth i takes time proportional to the index i, but we can do better when we
take into account repeats. Note that nth i fails when i is greater than or equal to the size of
the data set.

Finally, we need to be able to construct such data sets. There is an empty ordered multiset
and, we can add several occurrences of a value using a “bulk” add operation. add x amt m

increases the count of element x by some integer amt (where we assume amt > 0). This
would let us add a whole bunch of (duplicate) exam scores simultaneously.

Step 2: Design the interface
These considerations lead us to the following module signature (a.k.a. interface) of opera-
tions for the abstract type OMSET.
module type OMSET = sig

type ’a omset

val empty : ’a omset
val size : ’a omset -> int
val count : ’a -> ’a omset -> int
val add : ’a -> int -> ’a omset -> ’a omset
val nth : ’a omset -> int -> ’a

end

There is nothing to do for Steps 1 and 2. You will demonstrate your understanding
in the following parts.

PennKey: 5



Step 3: Write Test Cases (22 points total)

a. (8 points) Which of the following would create an int omset value suitable for repre-
senting the example data set: [72; 85; 85; 85; 93; 93; 99]? (mark all that apply)

2

let m = [72; 85; 85; 85; 93; 93; 99]

2

let m = add 72 1 (add 85 3 (add 93 2 (add 99 1 empty)))

2

let m = fold (fun x acc -> add x 1 acc) empty [72;85;85;85;93;93;99]

2

let m = let m = empty in
nth m 0 = 72 && nth m 1 = 85 && nth m 2 = 85 && nth m 3 = 85 &&
nth m 4 = 93 && nth m 5 = 93 && nth m 6 = 99

Recall that for abstract types, we write property-based tests.

b. (10 points) Let m be an ’a omset, x and y be values of type ’a, and amt be an int amount
greater than 0. Which of the following properties characterize the type OMSET as described
above? (mark all that apply)

2 count x empty = 0

2 size (add x amt m) = amt + size m

2 count x (add x amt m) = amt + (count x m)

2 if count x m = count y m then x = y

2 if x <> y (i.e., they are not equal), then count x (add y amt m) = count x m

c. (4 points) As mentioned above, the nth m i operation should fail if the index i is larger
than or equal to the m’s size. Which of the following test cases would confirm that behavior?
(choose one)
2

let test () =
let m = add 1 3 empty in
not (nth m (size m) = 17)

;; run_test "nth fails" test

2

let test () =
let m = add 1 3 empty in
nth m (size m) = 17

;; run_failing_test "nth fails" test

2

let test () =
let m = add 1 3 empty in
let i = (size m) + 1 in
i >= (size m)

;; run_test "nth fails" test

2

let test () =
let m = add 1 3 empty in
let i = (size m) + 1 in
i >= (size m)

;; run_failing_test "nth fails" test

6



Step 4: Implement the Code (39 points total)

To implement an OMSET, we need to fulfill the requirements of its interface. Similar to HW
3, we will use a variant of binary search trees (BSTs) for that purpose. We cannot use
BSTs directly, though, because they cannot store multiple copies of the same element, which
is required by the OMSET abstraction. We therefore use trees with a different structure and
invariant more suited to this application. We call this a “BST + Size” or BST+S, for short.

Unlike an ordinary BST, whose nodes carry just data values sorted in a particular way, a
BST+S tree node carries a pair of a value and the size of the collection rooted at that sub-
tree. The value parts of the tree follow the usual BST invariants, but the size is maintained
separately. For example, recall the list of elements [72; 85; 85; 85; 93; 93; 99] from
earlier. One way to represent that same information using a BST+S is shown on the left be-
low. For comparison, a BST without size information but with the same data values is shown
to the right. (As usual, we omit the Empty constructors from these pictures; they are also
shown in Appendix B.)

example BST+S BST (without size)
(85, 7) 85

/ \ / \
(72, 1) (99, 3) 72 99

/ /
(93, 2) 93

Each node of a BST+S has size information. For the leaf nodes such as (72, 1) and
(93, 2), that size information is just the count: 72 occurs once and 93 occurs twice. For
interior nodes, the size is the total of the size of the subtrees (which is just the size at their
roots) plus the count of the data at that node. For example, because 85 occurs three times in
the data, the size at its node is 7: 3 (count of 85) + 1 (size of the left subtrees) + 3 (size of the
right subtree)—this accounts for all 7 elements of the data. Following this invariant, the size
at the root node is the number of elements in the whole collection. We can thus implement
the size operation required for an OMSET like this:

let size (t: (’a * int) tree) : int =
begin match t with
| Empty -> 0
| Node(_, (_, s), _) -> s

end

Putting all of that together, we end up with the BST+S Invariant, as spelled out in Appendix B
(which also repeats the definition of size for your reference).

a. (6 points) Which of the following are correct BST+S trees that represent the same data
set as illustrated by the example tree? (mark all that apply)
2 2 2

(85, 7) (93, 7) (85, 7)
/ \ / \ / \

(72, 1) (93, 3) (85, 4) (99, 1) (72, 3) (99, 1)
\ / \
(99, 1) (72, 1) (93, 2)

PennKey: 7



b. (4 points) Suppose we were to add the value 100 with a count of 5 to the example BST+S.
If our implementation of add follows the usual strategy for BST insert with respect to the
value (see Appendix C) but also maintains the BST+S invariants, which of the following
will be the resulting BST+S? (choose one)
2 2

(85, 7) (85, 12)
/ \ / \

(72, 1) (99, 3) (72, 1) (100, 8)
/ \ /

(93, 2) (100, 5) (99, 3)
/

(93, 2)

2 2
(85, 12) (85, 7)
/ \ / \

(72, 1) (99, 8) (72, 1) (100, 5)
/ \ /

(93, 2) (100, 5) (99, 3)
/

(93, 2)

c. (15 points) The code for the add operation for a BST+S follows a pattern similar to the
usual BST insert (shown in Appendix C), but must additionally maintain the size informa-
tion part of the invariant. Fill in the blanks below to complete this implementation. Assume
that t satisfies the BST+S invariants and that count > 0.

let rec add (n:’a) (count:int) (t:(’a * int) tree) : (’a * int) tree =
begin match t with

| Empty -> Node(Empty, __________________________________, Empty)

| Node(lt, (x, s), rt) ->
if n = x then

_____________________________________________________________
else if n < x then

_____________________________________________________________
else

_____________________________________________________________
end

8



d. (8 points) To get the count of a value stored in a BST+S, we need to do a bit of compu-
tation. For instance, in our example tree, the count 85 example is 3, but we arrive at that
answer by calculating it from the size information stored in the children: 7 - (1 + 3), as
depicted (with suggestive formatting) below:

example BST+S count 85 example = 3 =
(85, 7) 7

/ \ -
(72, 1) (99, 3) (1 + 3)

/
(93, 2)

That leads us to the following code, in which value_count is a helper that computes the
count of value at the root of a BST+S tree.

let value_count (t:(’a * int) tree) : int =
begin match t with
| Empty -> 0
| Node(lt, (_, s), rt) -> s - ((size lt) + (size rt))

end

let rec count (n:’a) (t:(’a * int) tree) : int =
begin match t with
| Empty -> 0
| Node(lt, (x, _), rt) ->
if x = n then value_count t
else if n < x then count n lt
else count n rt

end

Which of the following are true statements about the code above? (mark all that apply)

(a) True 2 False 2
If t satisfies the BST+S invariants, then count n t will visit exactly size t nodes
(where size t is defined earlier).

(b) True 2 False 2
If t does not satisfy the BST+S invariants, then count n t will visit all of the nodes in
the tree before returning an answer.

(c) True 2 False 2
Running value_count t takes time proportional to the number of nodes in the height
of the tree t.

(d) True 2 False 2
If we change the type annotation on the argument t of value_count from (’a * int) tree

to instead be int tree, the program would still typecheck.

PennKey: 9



e. (6 points) Finally, we can implement the nth operation, which uses the size information
stored at each node to efficiently index into a BST+S structure.

To see how it works, recall that in a BST+S the count of the value x stored at a node
Node(lt, (x, s), rt) is equal to s - ((size lt) + (size rt)). (This is the defini-
tion of the value_count function above.) That means that if we want to find the element at
index i we can decide whether it is in lt, one of the copies of x or in rt by doing arithmetic
and comparing with i. For example, if (size lt) <= i then the ith element we are looking
for must not be in the left subtree.

The code for nth below has holes marked by (A), (B) and (C).
let rec nth (t:(’a * int) tree) (i:int) : ’a =

begin match t with
| Empty -> failwith "no such element"
| Node(lt, (x, s), rt) ->
let lt_size = size lt in
let rt_size = size rt in

if i < ___(A)_____ then nth lt i

else if i < ____(B)____ then x

else nth rt ____(C)____
end

Match each hole with the correct OCaml expression such to complete nth. Choose your
answers from among the options 1 through 5. Two of the options will not be used. (Note that
there may be more than one way to write the correct arithmetic expression, but only version
is listed below—these options are all different.)

____(A)____ = 1 2 2 2 3 2 4 2 5 2

____(B)____ = 1 2 2 2 3 2 4 2 5 2

____(C)____ = 1 2 2 2 3 2 4 2 5 2

OPTIONS:

1. lt_size

2. (rt_size + lt_size)

3. (s - rt_size)

4. (i - (s - rt_size))

5. (rt_size - i)

10



Step 5: Modularity and Abstraction - Using the OMSET (8 points)

Suppose we package the code developed above into a module implementing the OMSET in-
terface as follows (where we repeat the definition of OMSET from before and omit the code
definitions developed previously—you can assume they are implemented correctly following
the BST+S invariants.)
;; open Trees

module type OMSET = sig
type ’a omset

val empty : ’a omset
val size : ’a omset -> int
val count : ’a -> ’a omset -> int
val add : ’a -> int -> ’a omset -> ’a omset
val nth : ’a omset -> int -> ’a

end

module BSTSOmset : OMSET = struct
type ’a omset = (’a * int) tree

let empty = Empty
let size (t : (’a * int) tree) : int = (* omitted *)
let value_count (t:(’a * int) tree) : int = (* omitted *)
let count (n:’a) (t:(’a * int) tree) : int = (* omitted *)
let add (n:’a) (count:int) (t:(’a * int) tree) : (’a * int) tree = (* omitted *)
let nth (t:(’a * int) tree) (i:int) : ’a = (* omitted *)

(* __(A)__ *)
end

;; open BSTSOmset

(* __(B)__ *)

(a) True 2 False 2
If we place the code let ans : int = count 3 empty at the point marked (A) above,
the resulting program will typecheck.

(b) True 2 False 2
If we place the code let ans : int = count 3 empty at the point marked (B) above,
the resulting program will typecheck.

(c) True 2 False 2
If we place the code let ans : int = value_count empty at the point marked (A)

above, the resulting program will typecheck.

(d) True 2 False 2
If we place the code let ans : int = value_count empty at the point marked (B)

above, the resulting program will typecheck.

PennKey: 11



Scratch Space
Use this page for work that you do not want us to grade. If you run out of space elsewhere in the
exam and you do want to put something here that we should grade, make sure to put a clear note
on the page for the problem in question.

12



Appendix A: Higher-Order List Processing Functions
Here are the higher-order list processing functions:

let rec transform (f: ’a -> ’b) (xs: ’a list): ’b list =
begin match xs with
| [] -> []
| h::tl -> f h :: transform f tl
end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =
begin match l with
| [] -> base
| h::tl -> combine h (fold combine base tl)
end

Appendix B: Binary Search Tree + Size (BST+S)
BST+S Invariant A tree t : (’a * int) tree satisfies the BST+S invariant if:

• t is Empty, or

• t is Node(lt, (x, s), rt) and:

– Every value in lt is less than x

– Every value in rt is greater than x

– s > (size lt) + (size rt)

– both lt and rt (recursively) satisfy the BST+S invariant

An example BST+S for the data set [72; 85; 85; 85; 93; 93; 99] (left) and the BST struc-
ture of the values in the tree (right).

example BST+S BST (without size)
(85, 7) 85

/ \ / \
(72, 1) (99, 3) 72 99

/ /
(93, 2) 93

Following the invariant above, the size of a BST+S tree t is:
let size (t: (’a * int) tree) : int =

begin match t with
| Empty -> 0
| Node(_, (_, s), _) -> s

end

13



Appendix C: Generic Binary Search Trees

type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

(* checks if n is in the BST t *)
let rec lookup (t:’a tree) (n:’a) : bool =

begin match t with
| Empty -> false
| Node(lt, x, rt) ->

if x = n then true
else if n < x then lookup lt n
else lookup rt n

end

(* returns the maximum integer in a *NONEMPTY* BST t *)
let rec tree_max (t: ’a tree) : ’a =

begin match t with
| Empty -> failwith "tree_max called on empty tree"
| Node(_, x, Empty) -> x
| Node(_, _, rt) -> tree_max rt
end

(* Inserts n into the BST t *)
let rec insert (t: ’a tree) (n: ’a) : ’a tree =

begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t
else if n < x then Node(insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

(* returns a BST that has the same set of nodes as t except with n
removed (if it’s there) *)

let rec delete (t: ’a tree) (n: ’a) : ’a tree =
begin match t with
| Empty -> Empty
| Node(lt, x, rt) ->

if x = n then
begin match (lt, rt) with
| (Empty, Empty) -> Empty
| (Empty, _) -> rt
| (_, Empty) -> lt
| (_,_) -> let y = tree_max lt in Node(delete lt y, y, rt)
end

else if n < x then Node(delete lt n, x, rt)
else Node(lt, x, delete rt n)

end

14


