CIS 1200 Midterm I ~ February 16, 2024

Name:

PennKey (penn login id, e.g., sweirich):

I certify that I have complied with the University of Pennsylvania’s Code of Academic Integrity in
completing this examination.

Signature: Date:

* Please wait to begin the exam until you are told it is time for everyone to start.

* When you begin, please start by writing your PennKey at the bottom of all the odd-numbered
pages in the rest of the exam.

* There are 100 total points. The exam length is 60 minutes.
* You may use a single, handwritten sheet of notes during the exam.

* For coding problems: aim for accurate syntax, but we will not grade your code style for
indentation, spacing, etc.

* There are 13 pages in the exam and an appendix for your reference. Do not write any answers
in the appendix as they will not be graded.

* Do not spend too much time on any one question. Be sure to recheck all of your answers.

¢ Good luck!

1. Types (16 points total)

For each OCaml value below, fill in the missing type annotations or else write “ill typed” if
there is no way to fill in the annotation that does not cause a type error.

Your answer should be the most generic type that OCaml would infer for the value—i.e.,
if int 1ist and bool 1list are both possible types of an expression, you should write

"a list.

Some of these expressions refer to the types and functions defined in the appendix.

We’ve done the first one for you.

let ans: int list = [3; 1]

(a) let ans: =
fun (x : bool) -> x || x

(b) 1et ans: =

6 + if 3 < 5 then 4 else 1

(c) let ans: =
"hello"::"world"::[]::1]

(d) 1et ans: =
([true; false], 5)

(e) 1let ans: =
begin match [2; 4; 5] with

| [] —> "empty"
| hd::tl -> hd
end

(f) let ans: =

(fun (x : int) -> fun (y : int) -> x > y) 3000

(g) let ans: =
fold (fun (x : int list) (acc : int list) —-> x @ acc) []

(h) 1et ans: =
fun z -> transform (fun (x, y) -> x::y) z

2. Binary tree representation and recursion (18 points total)

This problem asks you to compare two different definitions of trees, related to those you
have seen in the homework assignments.

The first tree type is a generic version of labeled_tree, a data type used in the second
homework assignment.

(+ The labelled tree type from HWZ2, made generic *)
type "a labeled_tree
| LLeaf of "a
| LNode of 'a labeled_tree x "a % ’'a labeled_tree

(a) (4 points) Which of these trees can be represented using the 1abeled_tree type?

True O
True [
True [
True O

i.
2
/ \

3
False O
False [
False [
False [

ii. iii. iv.
3 4 4
/ / A\ / N\
1 1 6 1 6
/ o\ /
5 7 5

ii.
iii.

iv.

(b) (4 points) What do we know about all 1abeled_trees?

True [
True [
True [
True O

PennKey:

False []
False [
False [
False [J

The tree is a binary search tree.

The tree contains at least one value.

The tree contains an even number of values.
nonempty-subtrees: Question removed from the exam.

(c) (10 points) Now compare the labeled_tree type to the generic binary tree type that
you used in the third homework assignment, repeated in the appendix on page 14.

The following function translates a t ree to a 1abeled_tree of the same structure.

let rec to_labeled _tree (t : ’'a tree): ’"a labeled_tree =
begin match t with
| Empty —> failwith "No empty labeled_tree"
| Node (Empty, x, Empty) —-> LLeaf x
| Node (1 , x, r) —-> LNode (to_labeled_tree 1, x, to_labeled tree r)
end

However, note that this function fails on some inputs (using failwith).

Implement a generic function, called is_labeled_tree, that returns true exactly
when this function succeeds. In other words, if is_labeled_tree function returns
true for some tree, then to_labeled_tree should return a labeled_tree for that
input. Conversely, if is_labeled_tree returns false, then to_labeled_tree should
fail on that input.

(# Can t be represented as a labeled tree? x)
let rec is_labeled_tree (t : "a tree) : bool =

3. Binary Search Trees (32 points total)

This problem concerns a variation of binary search trees called sized binary search trees, or
SBSTs for short.

A sized tree contains an extra int at each node. We represent a sized tree in OCaml using
the following datatype definition.

type 'a sized_tree =
| SEmpty
| SNode of ’'a sized_tree * ('a x int) * ’'a sized_tree

A tree satisfies the size invariant if the integer stored at each node is one more than the sum
of the sizes of its left and right subtrees. The size of a tree is defined as follows.

(+ access the size of the tree %)
let size (t:’a sized_tree) : int =
begin match t with
| SEmpty -> 0
| SNode (_, (_,sz),_) —> sz
end

We can check whether a tree satisfies the size invariant using the following function.

(+ make sure that the size values are correct in the tree %)
let rec is_sized tree (t : 'a sized_tree) : bool =
begin match t with
| SEmpty —-> true
| SNode (1lt, (v, sz), rt) ->
sz = size 1lt + 1 + size rt &&
is_sized_tree 1t && is_sized tree rt
end

(a) (4 points)
If a tree satisfies the size invariant, then the size function will always return the number

of values stored in the tree.
True O False [

If a tree does not satisfy the size invariant, then the size function always will return a
number that is different from the number of values stored in the tree.
True [False [

PennKey: 5

(b) (8 points) A SBST is a tree that satisfies both the size and binary search tree invariants.

To avoid confusing values and sizes in this problem, we will only work with trees
that contain string values. Recall that in OCaml, strings can be compared using the <
operator, and that "a" < "Db" evaluates to true. If a tree containing strings satisfies
the BST invariant, then the strings will be stored in alphabetical (dictionary) order.

We draw sized_trees by including both the value and size at each node, separated by
a comma. For example, one SBST is

sl = ("d", 3)
/ \
("b",l) ("e",l)

and can be expressed in OCaml as

let sl = SNode (SNode (SEmpty, ("b",1), SEmpty),
("d", 3) ,
SNode (SEmpty, ("e",1l), SEmpty))

Which of the following trees are SBSTs?
violates the BST invariant s2 ("dv, 4)

O
J wviolates the size invariant / \
0 isa SBST ("b", 1) ("e", 1)

violates the BST invariant s3 ("d", 4)
violates the size invariant / \
isaSBST ("b",z) ("e",l)

("f",l)

Oo0d

violates the BST invariant s4 ("d", 3)
violates the size invariant / \

isaSBST ("b",l) (" ",l)

oog

—~ — O

"f", l)

violates the BST invariant s5 ("dv, 4)
violates the size invariant / \

is a SBST ("b", 1) ("e",2)
\

("f", 1)

oog

(c) (8 points) Recall from HW3 that a tree is perfect when

* every leaf is the same distance from the root
* every node has either O or 2 children.

If a tree satisfies the size invariant, there is a simple way to determine if it is a perfect
tree, that does not require calculating the distance of each leaf to the root. Complete
the following function, that does so. Your answer must use the size function defined
above and may assume that the input tree satisfies the size invariant.

let rec is_perfect (t : "a sized_tree) : bool =
begin match t with
| SEmpty ->

| SNode (1t, (x, sz), rt) ->

end

PennKey: 7

(d) (12 points) The insertion function for SBSTs must maintain both the size invariant and
the BST invariant. However, the following definition of insert is incorrect.

let rec bad_insert (t:’a sized_tree) (n:’a) : ’'a sized_tree =
begin match t with
| SEmpty —-> SNode (SEmpty, (n, 1), SEmpty)
| SNode (1t, (x, sz), rt) —>
if x = n then t
else if n < x then
SNode (bad_insert 1t n, (x, sz + 1), rt)
else
SNode (1t, (x, sz + 1), bad_insert rt n)
end

First, complete a test case that demonstrates when this function returns an incorrect
tree compared to good_insert, the correct version of the function (not provided).
The first blank should be a string that produces different results for bad_insert and
good_insert. The second and third blanks should be the trees that result from these
insertions, and one of (s1)-(s5), defined in part (b) and repeated in the appendix.

;; run_test "bad_insert fails" (fun () ->
let str : string = in
let bad = bad_insert sl str in
let good = good_insert sl str in

not (bad = good) &&

bad = && good =)

Now, complete a test case that shows that bad_insert sometimes works. Fill in the
string to insert and the resulting tree, which should be one of the trees (s1)-(s5).

;; run_test "bad_insert works" (fun () —>

let str : string = in

let bad = bad_insert sl str in

let good = good_insert sl str in

bad = good && bad =)

4. Abstract Data Types and Higher-Order Functions (34 points total)

At ACME, there are employees whose job it is to shop for items that have been ordered
online. For each order, these shoppers need to know the name of the customer, the items
that the customer wants, and the priority of the order (some orders are rush jobs!). We’d like
to keep track of this information for the shoppers in a fodo list and support the following
operations (among others).

e There is an empty todo list.
¢ Orders can be added to the todo list via the add_order function.

* The shopper can access the next items to shop for and remove them from the todo list

Vﬂlnext_items.

For clarity in the code, we will define the following type abbreviations, and use a tuple of a
priority, customers, and their item list. to represent an order.

type priority = int (¥ higher is better %)
type customer = string (*» name of the customer =)
type item = string (# name of a grocery item %)

For example, we can create orders for Maddie and Julia as below.

let orderl = (1, "Julia", ["Apple"; "Banana"; "Pear"])

let order2 = (2, "Maddie", ["Turkey"; "Chicken"; "Beans"])

We can then construct a todo list using the operations add_order and empty described above.

let 1listl = add_order orderl (add_order order2 empty)

Finally, we can define a test case that demonstrates that because Maddie’s order has higher
priority than Julia’s, her items should be shopped for next.

the behavior of next_items.

;; run_test "next_items" (fun () -—>
let (items, _) = next_items listl in
items = ["Turkey"; "Chicken"; "Beans"])

(There is nothing to do on this page.)

PennKey: 9

(a) We plan to represent a fodo list using a list of orders, with the following representation
invariant:

* The orders are sorted by priority in the todo list, with the highest priority first.

* A customer may have multiple orders in the todo list, but no two of their orders
can have the same priority.

There may be multiple orders in the list with the same priority, as long as they are for
different customers.

To safely maintain these invariants, we will use an abstract data type. This question
asks you about various options for the interface of this abstract type. We can character-
ize these possible designs as:

* Unusable: lacking functionality: no client code could usefully call functions of
the interface to achieve a non-trivial result

» Unsafe: usable, but that doesn’t ensure implementation invariants are preserved:
the client can provide inputs that break implementation invariants

¢ Good: usable and able to enforce invariants

For each of the following signatures, mark the box next to the characterization that
best describes it. Additionally, if it is not “Good”, briefly describe why you chose that
choice. For example, if a signature is “Unsafe” explain how a client could break the
implementation invariant. Use each characterization exactly once!

You may assume that the types priority, customer and item have been defined as on
page 9.

(4 points)

module type GROCERYORDERS = sig
type order = priority % customer * item list
type todo_list
val empty : todo_list

val add_order : order -> todo_list -> todo_list
val next_items: todo_list —-> item list » todo_list
end

[0 Unusable 0 Unsafe O Good

Explanation:

10

PennKey:

(4 points)

module type GROCERYORDERS = sig
type order = priority x customer * item list
type todo_list = order list
val empty : todo_list
val add_order: order -> todo_list -> todo_list
val next_items: todo_list —-> item list * todo_list
end

0 Unusable 0 Unsafe O Good

Explanation:

(4 points)

module type GROCERYORDERS = sig
type order
type todo_list
val empty : todo_list
val add_order: order -> todo_list -> todo_list
val next_items: todo_list —-> item list % todo_list
end

[0 Unusable 0 Unsafe O Good

Explanation:

11

(b)

Now consider the implementations of operations inside a module that starts with the
following type definitions, in addition to the ones shown on page 9.

type order = priority * customer x item list
type todo_list = order list

(12 points) Complete the following implementation of a function that adds a new order
to a todo list. Your function may assume that the todo list satifies the invariants shown
on page 10. To maintain these invariants, if a customer already has an order with the
same priority in the list, the new items should be appended after their original items.
Furthermore, any orders by other customers in the todo list with the same priority
should come before the newly added order.

let rec add_order (new_order :)

(lst :)

begin match 1lst with

[l —>

| (pl, c1, il) :: tl1 —>
let (p2, c2, 12) = new_order in
if
then (pl, cl, il @ 1i2) :: tl
else if
then (p2, c2, i2) :: (pl, cl, il) :: tl
else

end

12

Implement the next function using either transformor fold. Your answer may not be
recursive, nor may it call other functions that use list recursion except for the @ operator.

(c) (10 points) Get all items for a given customer from all of their orders. The highest
priority items should appear first in the output list. If there is no order for the customer,
return an empty list. You may assume that the input todo list satisfies the invariants.

let get_items (cl : customer) (1 : todo_list) : item list =

PennKey: 13

A Generic Binary Search Trees

(+ Generic binary trees, from HW 3)
type 'a tree =

| Empty

| Node of "a tree * 'a "a tree

let rec lookup (t:’a tree) (n:’a) : bool
begin match t with
| Empty —-> false
| Node (1t, x, rt) —->
x =n || if n < x then lookup 1lt n else lookup rt n
end

(+ Inserts n into the binary search tree t =)
let rec insert (t:’"a tree) (n:'a) : "a tree =
begin match t with
| Empty —> Node (Empty, n, Empty)
| Node (lt, x, rt) —>
if x = n then t
else if n < x then Node (insert 1t n, x, rt)
else Node (lt, x, insert rt n)
end

B Higher-Order List Processing Functions

Here are the higher-order list processing functions:

let rec transform (£ : 'a -> ’'b) (p : "a list) : ’'b list
begin match p with
| (entry::rest) —-> f entry :: transform f rest
[[1 —> []
end

let rec fold
(combine: b > 'a -> ’a)
(base:"a)
(L : b list) : 'a =
begin match 1 with
| [1 —> base
| h :: t1l -> combine h (fold combine base tl)
end

14

C Sized Binary Search Trees

type 'a sized_tree =
| SEmpty
| SNode of 'a sized_tree » ('a * int) * ’"a sized_tree

(* access the size of the tree %)
let size (t:"a sized_tree) : int =
begin match t with
| SEmpty -> 0
| SNode (_, (_,sz),_) —> sz
end

(* make sure that the size values are correct in the tree
let rec is_sized_tree (t : '"a sized_tree) : bool =
begin match t with
| SEmpty —-> true
| SNode (1lt, (v, sz), rt) ->
sz = size 1lt + 1 + size rt &&
is_sized_tree 1t && is_sized tree rt
end

Example sized binary trees, used in question 3.

s1 = ("d", 3)
/ \
("b", 1) ("e",1)
s2 = ("d", 4)
/ \
("b", 1) ("e",1)
s3 = ("d", 4)
/ \
("b",2) ("e",1)
\
("£", 1)
s4 = ("a", 3)
/ \
("b", 1) ("e",1)
\
("E", 1)
s5 = ("a", 4)
/ \
("b", 1) ("e",2)
\
("E", 1)

PennKey:

*)

	Generic Binary Search Trees
	Higher-Order List Processing Functions
	Sized Binary Search Trees

