Programming Languages
and Techniques
(C1S1200)

Lecture 1

Introduction to Program Design

Introductions

* Swapneel Sheth
— Levine Hall 264
— swapheel@cis.upenn.edu

— http://www.cis.upenn.edu/~swapneel

— Office hours: Tuesdays 10:30am — 12:30pm
(& by appointment)

* Benjamin Pierce
— Levine Hall 562
— bcpierce@cis.upenn.edu

— http://www.cis.upenn.edu/~bcpierce

— Office hours: Mondays 3:30-5:00pm
(& by appointment)

CIS1200

mailto:swapneel@cis.upenn.edu
http://www.cis.upenn.edu/~swapneel
mailto:bcpierce@cis.upenn.edu
http://www.cis.upenn.edu/~bcpierce

Head Teaching Assistants

N
X

Katrina Liu

Claire Keller

Mehak Dhaliwal

CIS1200

What is CIS 12007

 CIS1200is a course in program design

* Practical skills

— ability to write larger (~1000 lines)

programs

— increased independence

— test-driven development, principled

("working without a recipe")

debugging

* Conceptual foundations

common data structures and algorithms
several different programming idioms
focus on modularity and compositionality
derived from first principles throughout

e |t will be fun!

CIS1200

retburn 3‘”‘"9 may alementsbeginneed

. reference operations ynit
implements Ilbrarg uses programmlng
== function:
bubb window
" OgSM time many Displaceable size sbacke'se
state used..,
sbabtic see

lisGYeue...
mnd make called F :mga ion
vo‘add\7a luesNEW.7:
= o.Qjecbs,ocamlcode widgeb

mouseJ 1 heap ol f[eldg looDpNode

T Point
"N expressnon u bllc Ue\f;lﬁ local
excepbion .

case "Sbe"e' workspace nexb variable

TCIASS
read
figure funcbions

rec sum

By poinc m element
renvalue b?;:
meansprogram

result

first Figure 4R ~ private "y
CaIIUSIng OC?owdest"eballalso

match
j"ﬁ“gb Iengbh
H Note g field input
seb bree
extent Ilkeml ht quI
Empty head wribe
bool Il’T'IUSbb erenbp art whebher mebhods
implemen ubable
graphics Use b drawing bypes

Prerequisites

* We assume you can already write small programs
(10 to 100 lines) in some imperative or object-
oriented language
— Java experience is strongly recommended
— CIS 1100 or AP CS is typical
— You should be familiar with editing code and running

programs in some language

* |If you're wondering whether you should be in CIS
1100 or 1200, see here:

— https://advising.cis.upenn.edu/skip-1100
— If you still have doubts, come talk to us

CIS1200

https://advising.cis.upenn.edu/skip-1100

CIS 1200 Tools

e OCaml

— Industrial-strength, statically-typed
functional programming language

— Lightweight, approachable setting for
learning about program design

— Browser-based development tools:
codio.com

e Java

— Industrial-strength, statically-typed
object-oriented language

— Many tools/libraries/resources available

— Browser-based development or local IDE

CIS1200

Why two languages??

Clean pedagogical progression
Everyone starts at the same place
Practice in learning new tools

Different perspectives on programming

“IThe OCaml part of the class] was very essential to
getting fundamental ideas of comp sci across. Without the second
language it is easy to fall into routine and syntax lock where you
don't really understand the bigger picture.”
--- CIS 1200 Student

“IOCaml] made me better understand features of Java that seemed
innate to programming, which were merely abstractions and
assumptions that Java made. It made me a better Java programmer.”

--- CIS 1200 Student

Course Structure and Logistics

All course material is available on the course website

http://www.seas.upenn.edu/~cis1200/

http://www.cis.upenn.edu/~cis1200

Course Grade Components

Lectures (3% of final grade)

— Presentation of ideas and concepts, interactive demos, etc.
— Lecture notes, slides & video recordings available

— Participation using “Poll Everywhere”

Recitations / Labs (8% of final grade) Warning: This will be a

— Practice and discussion in small group setting challenging and

— Wed/Thurs, grade based on participation time consuming

Homework (40% of final grade) (and rewardllng =)
course!

— Practice with individual problem solving
— Help available from course staff in office hours
— Due Tuesdays, grade based on automated tests + style

Exams (49% of final grade)

— Test foundations of program design

— Do you understand the terminology? Can you reason about
programs? Can you synthesize solutions?

— 2 midterms (14% each, dates on website) and a final (21%, TBA)

Homework

9 programming assignments

Submit assignments on the course website
— You'll get automated grade and style feedback
— Each assignment will have limits on the number of submission
attempts
Due at midnight (23:59pm ET) on the date announced

Standard late policy, applies to most situations:
-10 points if up to 24 hours late

-20 points if 24-48 hours late

no submissions accepted after that

In emergencies, contact course staff at
Cis1200@seas.upenn.edu

mailto:cis1200@seas.upenn.edu

Some of the homework assignments...

X/ Caml graphics

and lots
of time

lots Apes
l

@
Greater Apes Lesser Apes @
AT MY
¢ D
Cyoe
AT,

EXTRA DINOSAURS = EXTRA AWESOME

siamang

" chimpanzee “pileated gibbon

. . [OFoint] [CEitipse] [Othick Lines] [OPaste]
Computing with DNA WO EE 0D E et outer i TGRS = B AL

Building a GUI Framework

r

|£ | Image Processing

Load new image Save image Undo Quit
RotateCW
RotateCCW @ | MESG java Hello, world! |
e
-

Mirror horizontal b e
type MESG
param0 java

Simple transform param1 (null

payload Hello, world!

Client

m andclsl ' Client
Additional classes

Contrast

Reduce palette

Blur

Flood

‘ Chat Client/Server
Image Processing

Final project: Design a Game

C - > e N (& Obiectives™) > Reset™
(Instructions) (RestartLevel) ((Objectives) (Reset)

Planet Game

0 coins 0 coins
3 bombs

File Edit Help |

Orbit Cruiser
0 a'sleroid; Tolftcted

.
.

energy

10 Mg effective mass

(PLAY/RESET) (HELP)

CIS1200

Ed

e We use Ed for most communication in this course
— from us to you
— from you to us

— from you to each other

* If you are already registered for the course, you
should be signed up automatically

— If not, you’ll get added when you enroll

* Ed supports anonymous questions

— Please check to see whether your question has already
been asked; it helps us deliver higher quality responses.

Look to Ed for course announcements,
weekly “todo” lists, reminders, etc.

In-Class Ahnouncements

Each lecture will also start with reminders,
announcements, and a short recap

— Make sure you read the syllabus on the course website
before the next class

http://www.seas.upenn.edu/~cis1200/

CIS1200

Recitations / Lab Sections

e Recitations start next week
— First meeting September 4/5
— Room locations on Path@Penn (Moore Labs)

— Please play a bit with the Codio platform before the first
recitation (instructions will be posted)

e Goals of first recitation

— Meet your TAs and classmates
— Practice with OCaml before your first homework is due

Academic Integrity

* Submitted homework must be your individual work

* OK (and encouraged!)
— Discussions of concepts
— Discussion of debugging strategies
— Verbally sharing experience

* Not OK

— Copying or otherwise looking at someone else’s code

— Sharing your code in any way
(copy-paste, github, paper and pencil, ...)

— Using code from a previous semester
— ChatGPT and similar tools

Penn’s code of academic integrity:
https://catalog.upenn.edu/pennbook/code-of-academic-integrity/

uuuuu

Enforcement

* Course staff will check for copying

— We will use plagiarism-detection tools on your code

Violations will be treated seriously!

- zero credit

- lowered course grade

- referral to Center for Community
Standards and Accountability

* Questions? See the course FAQ. If in doubt, ask.

CIS1200

No Devices during Lecture

* Laptops closed... minds open

Although this is a computer science class,

the use of electronic devices — laptops,
phones, etc., during lecture (except for
participating in quizzes) is prohibited

e Why?

CIS1200

Device users tend to surf/chat/
email/game/text/tweet/etc.

They also distract those around them
Better to take notes by hand

You will get plenty of time in front of your
computer while working on the homework

)

COVID

* Masking is optional (but welcome) in lectures and recitations

* If you contract COVID (or another communicable illness)
— follow the university procedures for isolation, quarantine
— let us know about your status
— course lectures are recorded; material is online

— We can make appropriate accommodations for HW, exams, recitation,
participation, etc.

So much for logistics... how about some computer science?

Fundamental Desigh Process

Design is the process of translating informal
specifications (“word problems”) into running code

Understand the problem

What are we trying to achieve?

What are the relevant concepts and how do they relate?
Formalize the interface

How should the program interact with its environment?

Write test cases

How does the program behave on typical inputs?

On unusual ones? On invalid ones?

Implement the required behavior

Often by decomposing the problem into simpler ones
and applying the same recipe to each

CIS1200

A design problem

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost: each attendee costs four cents
(50.04). Every performance also has a base cost of $180.

What profit do you make at any given price?

Step 1: Understand the problem

What are we trying to achieve?

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost; each attendee costs four cents
(50.04). Every performance also has a base cost of $180.

What profit do you make at any given price?

CIS1200

Step 1: Understand the problem

What are we trying to achieve?

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost; each attendee costs four cents
(50.04). Every performance also has a base cost of $180.

What profit do you make at any given price?

CIS1200

Step 1: Understand the problem

What are we trying to achieve?

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost; each attendee costs four cents
(50.04). Every performance also has a base cost of $180.

What profit do you make at any given price?

Calculate profit as a function of ticket price

CIS1200

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost; each attendee costs four cents
(50.04). Every performance also has a base cost of $180.

What profit do you make at any given price?

Step 1: Understand the problem

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost; each attendee costs four cents
(50.04). Every performance also has a base cost of $180.

What profit do you make at any given price?

Step 1: Understand the problem

What are the relevant concepts?

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost; each attendee costs four cents
(50.04). Every performance also has a base cost of $180.

What profit do you make at any given price?

CIS1200

Step 1: Understand the problem

What are the relationships among them?

Imagine that you own a movie theater. The more you charge,
the fewer people can afford tickets. In a recent experiment, you
determined a relationship between the price of a ticket and
average attendance. At a price of $5.00 per ticket, 120 people
attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. However, increased attendance
also comes at increased cost; each attendee costs four cents
(50.04). Every performance also has a base cost of $180.

What profit do you make at any given price?

profit = revenue — cost
revenue = price * attendees

cost = $180 + attendees * S0.04

attendees = some function of the ticket price

CIS1200

Step 2: Formalize the Interface

Goal: write a function that returns the profit when given the price

Idea: we’ll represent money in cents, using integers

type annotations
comment documents declare the input

the design decision and output types

\\ e
(* Money 1is represenggg/iﬂ/ﬁgagéf *)
let profit (price : 9nt) : int = ..

N.b. Floating point is generally a bad choice for representing money: bankers use different rounding conventions than the IEEE
floating point standard, and floating point arithmetic isn’t as exact as you might like. Try calculating 0.1 + 0.1 + 0.1 sometime
in your favorite programming language...

N.b. OCaml will let you omit these type annotations, but including them is mandatory for CIS1200. Using type annotations is

good documentation; they also improve the error messages you get from the compiler. When you get a type error message
from the compiler, the first thing you should do is check that your type annotations are correct.

CIS1200

Step 3: Write test cases

The design problem gives us an easy way to calculate
the expected result for one specific test case:

let profit_500 : int =

let price 500 1in

let attendees = 120 1in

let revenue price * attendees 1in

let cost 18000 + 4 * attendees 1n
revenue - cost

CIS1200

Write test cases

With a little thinking, we pretty easily write down
another test case:

let profit_490 : int =

et price 500 A 1n
120 J 1n

let attendees
let revenue price * attendees 1in
let cost 18000 + 4 * agttendees 1n

revenue - cCost

Recall: “Decreasing the price by a dime ($.10)
increases attendance by 15”

CIS1200

Add the Test Cases to the Program

Record the test cases as assertions:

— the command run_test executes a test

a test is just a function that takes no input and returns true if the test succeeds

let test500p (O : bool =
(profit 500) = profit_500

;5 run_test "profit at $5.00" test500p
\

/ the string in quotes identifies
the test in printed output
double semicolons (in case it fails)

mark top-level commands

CIS1200

Step 4: Implement the Behavior

profit, revenue, and cost are easy to define:

let attendees (price : int) : int = ..write it later.

let revenue (price : int) : int =
price * (attendees price)

let cost (price : int) : int =
18000 + (attendees price) * 4

let profit (price : int) : int =
(revenue price) — (cost price)

CIS1200

Apply the Design Pattern Recursively

attendees requires a bit of thought. Start with tests...

let attendees (price : int) : int = ‘
failwith “unimplemented” — ‘swbouw

unimplemented
functions

let test500a () : bool =
(attendees 500) = 120
:; run_test "attendees at $5.00" test500a

let test49@a () : bool =
(attendees 490) = 135
s run_test "attendees at $4.90" test429_

create the tests

*Note that the definition of attendees must go before the definition of profit from the problem

because profit uses attendees. statement fif'St.
CIS1200

Attendees vs. Ticket Price

160 -

140 -

120 -

100 -

80 -

60 -

40 -

20 -

0

($5.00, 120 attendees)

Problem statement gives a linear relationship
between ticket price (p) and number of attendees (a).

Equation foraline: y=mx+b i.e., b=y-mx

m = difference in attendance / difference in price

=15/-10
b =120-m * 500
=3/0

$4.75 $4.80 $4.85

CIS1200

let attendees (price:int) : int =
15/(-10) * price + 870
$495 $5.00 $5.05 $5.10 $5.15

CIS1200

c Codio Project File Edit Find View Tools Education Help Run Proj¢

Filetree X README.md tickets.ml Run Project X

OCAMLRUNPARAM=b ./tickets.native
Running: profit_500 ... Test passed!
Running: profit at $5.00 ...

Test failed: profit at $5.00

SSHETH
LectureDemos-22fa

© B 72 <

Running: attendees @ 500 ...

@ LectureDemos-22fa(master) |Test failed: attendees @ 500
» B build

> B full Running: attendees at $4.90 ...
» BB stub Test failed: attendees at $4.90

'c?fjlo codio@comradematrix-frogeducate:~/workspace$ I
.gitignore

.merlin
.ocamlinit
settings
assert.ml
assert.mli
Makefile
README.md

tickets.ml

@ @ @ @ @ @ @ @ @ @ @

tickets.native

Uh Oh...

The test cases for attendees failed!

Why?

let attendees (price:int) : int =
15/(-10) * price + 870

CIS1200

Uh Oh...

The test cases for attendees failed!

The issue here is that integer division is imprecise

e Using integer arithmetic, 15 / -10 evaluates to -1, since -1.5 rounds to -1

Here is a better* version:

let attendees (price:int) : int =
(15 * price) / (-10) + 870

* Multiplying 15*price before dividing by -10 increases the precision because rounding errors don’t creep in.

CIS1200

c Codio Project File Edit Find View Tools Education Help Run Proje

Filetree X README.md tickets.ml Run Project X assert.ml

SSHETH OCAMLRUNPARAM=b . /tickets.native

Running: profit_500 ... Test passed!
LectureDemos-22fa Running: profit at $5.00 ... Test passed!
Running: attendees @ 500 ... Test passed!
Running: attendees at $4.90 ... Test passed!
codio@comradematrix-frogeducate:~/workspace$ I

O B 72 <

8 LectureDemos-22fa (master)
» BB build
> B full
» I stub
.codio
gitignore
.merlin
.ocamlinit
settings

CIS1200

How Not to Solve This Problem

This program also passes all our tests...

let profit price =
price * (15 * pr ce / (-10) + 870) -
(18000 + 4 * (15 * price / (-10) + 870))

Nevertheless, it is bad because it...

— hides the structure and abstractions of the problem
— duplicates code that could be shared
— doesn’t document its interface via types and comments

CIS120

Summary (l)

CIS1200 promotes a structured design process:
1. Understand the problem
2. Formalize the interface
3. Write test cases
4. Implement the desired behavior

Summary (1)

Modern software development relies heavily on
test-driven development in strongly typed languages

— Write tests early in the programming process and use
them to drive the rest of the process

Types help structure the code.
Tests help get the details right.

For CIS 1200 homework projects:
— We will provide tests for each part of the project
— They will generally not be complete
— You should start each part by making up more tests

CIS1200

What’s Next?

Date Topic

Week 1
Videos

Wed 8/28 Introductions, Program Design

Fri 8/30

Week 2
Videos

Mon 9/2 No Class: Labor Day

Wed 9/4

Fri 9/6

Week 3
Videos

Mon 9/9

Tue 9/10

CIS1200

Slides

lecO1.pdf

Code

assert.ml tickets.ml

Reading

Chapter 1

