Programming Languages
and Techniques
(C1S1200)

Lecture 4

Lists, Recursion, and Tuples

WHATISED{B? = ¢

Engineering Deans’ Advisory Board (EDAB) is a student advocacy organization that works closely with
engineering administration to illuminate engineering-wide problems and create initiatives to improve
the educational, professional and co-curricular experiences of all Penn Engineering students.

PAST PROJECTS WHY EDAB? : Scan this!

Rachleff Scholars Close connections with Engineering Deans

Venture Lab Advisory Board and Faculty

Creative ideas to produce tangible changes

Syllabi Best Practices
Undergraduate Research Passionate, ambitious, tight-knit community

Mentoring Award Well-established alumni base

Sign up for a coffee chat with a current

EDAB member: tinurl.oedaoffeechat

Penn Labs

g

Thu, September 5

u Fiterby | oatcuny

Saarch Rosuits Soty © can Alorts Schadule © EXED
cis 1200001
cis 1200002
cis 1210001
as oo es ooz esrvaces

Penn Courses

Penn Mobile

i pennclubs.com/clubjpenniabs &

eoe @M -

i Penn Clubs

Penn Labs

Programming Academic Undergraduate Graduate

Technology

Description

Watch our previous info session to learn more about Penn Labs:
Spring 2022 Info Session - Recorded January 21, 2022
Password is: 1bTstt18

We are a team of student software engineers, product designers,
and business developers. Our ultimate goal is improving the Penn
community with technology. In addition to creating 100% free high-

Basic Info

2, 83 Registered (20 - 50
Members)

& Not Currently Accepting
Members

4 Application and Interview
Required

Both Semesters Q

Contact

Penn Clubs

{&} Penn Labs

Info session today at 7:30 PM

Huntsman F65

. . . Subscribe
Applications open tonight for updates
Due Monday, 9/9

pennlabs.org/apply

CIS 1200 Announcements

e Homework 1: OCaml Finger Exercises

— Due: Tuesday at 11.59pm ET

— Must submit via course website

— Use the "Zip’ option in the ‘Run Submission’ menu
not Codio’s “export as zipfile”

* Read Chapters 3 (Lists) and 4 (Tuples)
of the lecture notes

 We will start Chapters 5 & 6 on Monday

Review: What is a list?

A list is either:
[] the empty list, sometimes called nil

or
v :: tall aheadvaluev, followed by a list of the
remaining elements, the tail

« list an example of an inductive datatype
 We inspect a list value by pattern matching against its shape

* The natural way to process a list is with structural recursion

Calculating with Matches

* Consider how to evaluate a match expression:
begin match [1;2;3] with
| [] -> 42
| first::rest -> first + 10

end
—
Note: [1;2;3] means1::(2::(3::[1))
1+10
It doesn’t match the pattern [], so the first branch is
— skipped, but it does match the pattern
11 first::rest when first is1and
restis(2::(3::[1)).
So we substitute 1 for f1rst in the second branch.

The Inductive Nature of Lists

A list value is either:

[] the empty list, sometimes called nil
or

v :: tall aheadvaluev, followed by aIue

containing the remaining elements, the tail

* Why is this well-defined? The definition of list mentions ‘list’!

 Answer: ‘list’ is inductive:
— The empty list [] is the (only) list of 0 elements

— To construct a list of n+1 elements, add a head element to an existing
list of n elements

— The set of list values contains all and only values constructed this way

e Corresponding computation principle: recursion

Recursion

Recursion principle:
Compute a function value for a given input by
combining the results for strictly smaller parts of the
input.

— The recursive structure of the computation follows the
inductive structure of the input.

e Example:

length (1::2::3::[1) = 1 + length (2::3::[1)
length (2::3::[]) = 1 + length (3::[])
length (3::[1) = 1 + length []

length [] = 0

Recursion Over Lists

The function calls itself recursively so Lists are either empty or nonempty.
the function declaration must be Pattern matching determines which.

marked with rec. /

let F%c length (1 _:~String list) : int =
begin match 1 with
| [] > 0
| (x :: rest) -> 1 + length rest

end \ ///’

Z

If the list is non-empty, then “x”
is the first string in the list and “rest”
is the remainder of the list.

Calculating with pattern matching
and recursion

Calculating with Recursion

'I-ength [llall; llbll]
(substitute the list for | in the function body)
begin match "a"::"b"::[] with
| [] -> 0
| (x :: rest) -> 1 + length rest
end

(second case matches with rest = "'b" ::[])
1 + length ("b"::[1)
(substitute the list for | in the function body)
1 + begin match "b"::[] with
| [] -> 0

| (x :: rest) -> 1 + length rest
end

(second case matches again, with rest = [])

1+ (1 + length [])

; ; ; let rec length (l:string list) : int=
(substitute [] for | in the function body) begin mateh 1 with

Il [] -> 0
| (x :: rest) -> 1 + length rest

1+1+0 =2 end

More recursion examples...

let rec sum (1 : int list) : int =
begin match 1 with
| [] > 0
| (x :: rest) -> X + sum rest
end

let rec contains (l:string list) (s:string):bool =
begin match 1 with
| [] -> false
| (x :: rest) -> s = x || contains rest s
end

“n

4: What best describes the behavior of (foo 3 1) ? It returns trueif... 0

1. Every element of lis less than 3.

0%
2.Everyelement of lis greater than 3

0%
3. There exists an element in [that is less than 3

0%
4. There exists an elementin [that is greater than 3

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

What best describes the behavior of the function call (foo 3 1) ?
It returns true if...

let rec foo (z:int) (1 : int 1list): bool =
begin match 1 with
| [] -> true
| (X :: rest) ->
(x > z) & & foo z rest
end

Answer: every element is greater than 3

The General Pattern:
Structural Recursion Over Lists

Structural recursion builds an answer from smaller components:

let rec f (1 : .. 1ist) .. : .. =
begin match 1 with

| [1 > .. (* BASE CASE *)
| (hd :: rest) ->

.. (f rest) .. (* INDUCTIVE CASE *)
end

The branch for [] calculates the value (f []) directly.
— this is the base case of the recursion

The branch for hd: : rest calculates
(f (hd::rest))given hdand (f rest).

— this is the inductive case of the recursion

Tuples and Tuple Patterns

Two Forms of Structured Data

OCaml provides two basic ways of packaging multiple
values together into a single compound value:
* Lists:
— arbitrary-length sequence of values of a single type
— example: a list of email addresses
* Tuples:
— fixed-length sequence of values, possibly of different types
— example: tuple of name, phone #, and email

(Cartesian) Products

* The values of a tuple (or product) type are
tuples of values from each component type.

suppose the type t : bool
has values X, Y, and Z
4)
X X,), X,),
Y Y,), Y,),
/ (Z,), (Z,),
\- Y,
ot : t * bool

The tuple type t * bool has all pairs of values

Tuples

In OCaml, tuple values are created by writing a
sequence of expressions, separated by commas,
inside parens:

let my_pair = (3, true)
let my_triple = (“Hello”, 5, false)
let my_quadruple = (1, 2, ”three”, false)

Tuple types are written using infix ‘*’
— e.g.,my_triple has type:

string * int * bool

Pattern Matching on Tuples

* Tuples can be inspected by pattern matching:

let first (x: string * int) : string =
begin match x with
| (left, right) -> left
end

first (“b”, 10)
=

“b”

* As with lists, tuple patterns follow the syntax of tuple values
and give names to the subcomponents so they can be used on
the right-hand side of the -> in each case

Mixing Tuples and Lists

* Tuples and lists can mix freely:

[(1,"a"); (2,"b"); (3,"c")]
: (Int * string) list

([1;2;3], ["a"; "b"; "c'1)
(1nt list) * (string list)

Nested Patterns

 We're seen several kinds of simple patterns:

[] matches empty list

x::tl matches nonempty list

(a,b) matches pairs (tuples with 2 elts)
(a,b,c) matches triples (tuples with 3 elts)

 We can build nested patterns out of simple ones:

x o [] matches lists with exactly 1 element
[x] matches lists with exactly 1 element
X::(Qy::tl) matches lists with at least 2 elements

(X::XS, Y::YS) matches pairs of non-empty lists

Wildcard Pattern

* Another handy simple pattern is the wildcard " "

* A wildcard pattern indicates that the value of the is not
used on the right-hand side of the match case

— And hence needs no hame

_::tl matches a non-empty list, but only names its tail
(_,X) matches a pair (2-tuple), but only names the 2" part

Unused Branches

 The branches in a match expression are considered
in order from top to bottom

* If you have redundant matches, then later branches
are not reachable

— OCaml will give you a warning in this case

let bad_cases (1 : int 1list) : int =
begin match 1 with

[:l _ @ This case matches more lists
>M than that one does
X >/

x::§::t1 == X + Y (* unreachable *)
end

“m

4: What is the value of this expression?

0

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

What is the value of this expression?

let 1 = [1; 2] in
begin match 1 with
I X iyt —>
[] ->
I X :: ->
| [] ->

end

H~ wWN -

Answer: 1

“m

4: What is the value of this expression?

0

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

What is the value of this expression?

let 1 = [(2,true); (3,false)] in

begin match 1 with

| (x,false) :: tl -> 1
lw :: (X,y) :: z -> X
| x -> 4

end

Answer: 3

Exhaustiveness

e A pattern match is said to be exhaustive if it includes
a pattern for every possible value

 Example of a non-exhaustive match:

let sum_two (1 : int 1ist) : int =
begin match 1 with
| X:iiyii_ > X+y
end

 OCaml will give you a warning and show an example
of what isn’t covered by your patterns

Exhaustiveness

 Example of an exhaustive match:

let sum_two (1 : int list) : int =
begin match 1 with
| Xty -> X+y
| _ -> failwith "length less than 2"
end

* The wildcard pattern and failwith eliminate the
warning and make your intention explicit

Pattern Matching in Let

e« OCaml's ‘let x e 1n .. notation can bind a
pattern instead of a single variable:

let (x, y) = (true,"abc") 1in ..

* Very useful for naming tuple components

* Should avoid using when the pattern is not
exhaustive (i.e., there are multiple cases)

— that is what match is for

More List & Tuple Programming

see patterns.ml

Example: zip

* zip takes two lists of the same length and returns a
single list of pairs:
zip [1; 2; 3] ["a"; "b"; "c"] =
[(1,"a"); (2, "b") (3,"c")]

let rec zip (11: int 1list)
(12: string list) : (int * string) list =
begin match (11, 12) with
(L1, 1D -> [
| (x:: xs, y:: ys) -—> (X, y) :: (zip Xs ys)
l _ > []

end

