
Programming Languages
and Techniques

(CIS1200)

Lecture 4

Lists, Recursion, and Tuples

CIS 1200 Announcements

• Homework 1: OCaml Finger Exercises
– Due: Tuesday at 11.59pm ET
– Must submit via course website
– Use the ’Zip’ option in the ‘Run Submission’ menu

not Codio’s “export as zipfile”

• Read Chapters 3 (Lists) and 4 (Tuples)
of the lecture notes

• We will start Chapters 5 & 6 on Monday

• list an example of an inductive datatype
• We inspect a list value by pattern matching against its shape
• The natural way to process a list is with structural recursion

Review: What is a list?
A list is either:
 [] the empty list, sometimes called nil
or
v :: tail a head value v, followed by a list of the
 remaining elements, the tail

Calculating with Matches
• Consider how to evaluate a match expression:
 begin match [1;2;3] with
 | [] -> 42
 | first::rest -> first + 10
 end

Note: [1;2;3] means 1::(2::(3::[]))

It doesn’t match the pattern [], so the first branch is
skipped, but it does match the pattern
first::rest when first is 1 and
rest is (2::(3::[])).
So we substitute 1 for first in the second branch.

⟼
 1 + 10

⟼
 11

Recursion

The Inductive Nature of Lists

• Why is this well-defined? The definition of list mentions ‘list’!
• Answer: ‘list’ is inductive:

– The empty list [] is the (only) list of 0 elements
– To construct a list of n+1 elements, add a head element to an existing

list of n elements
– The set of list values contains all and only values constructed this way

• Corresponding computation principle: recursion

A list value is either:
 [] the empty list, sometimes called nil
or
v :: tail a head value v, followed by a list value

 containing the remaining elements, the tail

Recursion

• Example:
length (1::2::3::[]) = 1 + length (2::3::[])
length (2::3::[]) = 1 + length (3::[])
length (3::[]) = 1 + length []
length [] = 0

Recursion principle:
Compute a function value for a given input by
combining the results for strictly smaller parts of the
input.
– The recursive structure of the computation follows the

inductive structure of the input.

Recursion Over Lists

let rec length (l : string list) : int =
 begin match l with
 | [] -> 0
 | (x :: rest) -> 1 + length rest
 end

The function calls itself recursively so
the function declaration must be
marked with rec.

Lists are either empty or nonempty.
Pattern matching determines which.

If the list is non-empty, then “x”
is the first string in the list and “rest”
is the remainder of the list.

Calculating with pattern matching
and recursion

Calculating with Recursion
length ["a"; "b"]

⟼ (substitute the list for l in the function body)
begin match "a"::"b"::[] with
| [] -> 0
| (x :: rest) -> 1 + length rest
end

⟼ (second case matches with rest = "b"::[])
 1 + length ("b"::[])
⟼ (substitute the list for l in the function body)
 1 + begin match "b"::[] with

 | [] -> 0
 | (x :: rest) -> 1 + length rest
 end

⟼ (second case matches again, with rest = [])
 1 + (1 + length [])
⟼ (substitute [] for l in the function body)
 …
⟼ 1 + 1 + 0 ⇒ 2

let rec length (l:string list) : int=
 begin match l with
 | [] -> 0
 | (x :: rest) -> 1 + length rest
 end

More recursion examples…

let rec sum (l : int list) : int =
 begin match l with
 | [] -> 0
 | (x :: rest) -> x + sum rest
 end

let rec contains (l:string list) (s:string):bool =
 begin match l with
 | [] -> false
 | (x :: rest) -> s = x || contains rest s
 end

let rec foo (z:int) (l : int list): bool =
 begin match l with
 | [] -> true
 | (x :: rest) ->
 (x > z) && foo z rest
 end

What best describes the behavior of the function call (foo 3 l) ?
 It returns true if…

Answer: every element is greater than 3

The General Pattern:
Structural Recursion Over Lists

Structural recursion builds an answer from smaller components:

The branch for [] calculates the value (f []) directly.
 – this is the base case of the recursion

The branch for hd::rest calculates
 (f (hd::rest)) given hd and (f rest).
 – this is the inductive case of the recursion

let rec f (l : … list) … : … =
 begin match l with
 | [] -> … (* BASE CASE *)
 | (hd :: rest) ->
 … (f rest) … (* INDUCTIVE CASE *)
 end

Tuples and Tuple Patterns

Two Forms of Structured Data
OCaml provides two basic ways of packaging multiple
values together into a single compound value:
• Lists:
– arbitrary-length sequence of values of a single type
– example: a list of email addresses

• Tuples:
– fixed-length sequence of values, possibly of different types
– example: tuple of name, phone #, and email

(Cartesian) Products
• The values of a tuple (or product) type are

tuples of values from each component type.

true false : bool

(X, true) (X, false)

(Y, true) (Y, false)

(Z, true) (Z, false)

: t * bool

The tuple type t * bool has all pairs of values

: t

suppose the type t
has values X, Y, and Z

 X

 Y

 Z

Tuples
• In OCaml, tuple values are created by writing a

sequence of expressions, separated by commas,
inside parens:

• Tuple types are written using infix ‘*’
– e.g., my_triple has type:

let my_pair = (3, true)
let my_triple = (“Hello”, 5, false)
let my_quadruple = (1, 2, ”three”, false)

string * int * bool

Pattern Matching on Tuples
• Tuples can be inspected by pattern matching:

• As with lists, tuple patterns follow the syntax of tuple values
and give names to the subcomponents so they can be used on
the right-hand side of the -> in each case

let first (x: string * int) : string =
 begin match x with
 | (left, right) -> left
 end

first (“b”, 10)
⇒
“b”

Mixing Tuples and Lists
• Tuples and lists can mix freely:

[(1,"a"); (2,"b"); (3,"c")]
 : (int * string) list

([1;2;3], ["a"; "b"; "c"])
 : (int list) * (string list)

Nested Patterns
• We’re seen several kinds of simple patterns:

[] matches empty list
x::tl matches nonempty list
(a,b) matches pairs (tuples with 2 elts)
(a,b,c) matches triples (tuples with 3 elts)

• We can build nested patterns out of simple ones:
x :: [] matches lists with exactly 1 element
[x] matches lists with exactly 1 element
x::(y::tl) matches lists with at least 2 elements
(x::xs, y::ys) matches pairs of non-empty lists

Wildcard Pattern
• Another handy simple pattern is the wildcard "_"

• A wildcard pattern indicates that the value of the is not
used on the right-hand side of the match case
– And hence needs no name

_::tl matches a non-empty list, but only names its tail
(_,x) matches a pair (2-tuple), but only names the 2nd part

Unused Branches
• The branches in a match expression are considered

in order from top to bottom
• If you have redundant matches, then later branches

are not reachable
– OCaml will give you a warning in this case

let bad_cases (l : int list) : int =
 begin match l with
 | [] -> 0
 | x::_ -> x
 | x::y::tl -> x + y (* unreachable *)
 end

This case matches more lists
than that one does

What is the value of this expression?

let l = [1; 2] in

begin match l with
 | x :: y :: t -> 1
 | x :: [] -> 2
 | x :: t -> 3
 | [] -> 4
end

Answer: 1

What is the value of this expression?

let l = [(2,true); (3,false)] in

begin match l with
 | (x,false) :: tl -> 1
 | w :: (x,y) :: z -> x
 | x -> 4
end

Answer: 3

Exhaustiveness
• A pattern match is said to be exhaustive if it includes

a pattern for every possible value
• Example of a non-exhaustive match:

• OCaml will give you a warning and show an example
of what isn’t covered by your patterns

let sum_two (l : int list) : int =
 begin match l with
 | x::y::_ -> x+y
 end

Exhaustiveness
• Example of an exhaustive match:

• The wildcard pattern and failwith eliminate the
warning and make your intention explicit

let sum_two (l : int list) : int =
 begin match l with
 | x::y::_ -> x+y
 | _ -> failwith "length less than 2"
 end

Pattern Matching in let
• OCaml's `let x = e in …` notation can bind a

pattern instead of a single variable:

• Very useful for naming tuple components
• Should avoid using when the pattern is not

exhaustive (i.e., there are multiple cases)
– that is what match is for

let (x, y) = (true,"abc") in …

More List & Tuple Programming

see patterns.ml

Example: zip
• zip takes two lists of the same length and returns a

single list of pairs:
zip [1; 2; 3] ["a"; "b"; "c"] ⇒

[(1,"a"); (2,"b"); (3,"c")]

let rec zip (l1: int list)
 (l2: string list) : (int * string) list =
 begin match (l1, l2) with
 | ([], []) -> []
 | (x:: xs, y:: ys) -> (x, y) :: (zip xs ys)
 | _ -> []
 end

