
Programming Languages
and Techniques

(CIS1200)

Lecture 5

Datatypes and Trees

CIS 1200 Announcements
• HW01 is due TOMORROW at midnight

– Mandatory in-person check-in (15-20 minutes) with your
recitation TAs after you submit

– look for them to coordinate

• HW02 will be released soon

• If you would prefer a less-crowded recitation you are
welcome to switch
– Section 208, 217, 218, and 222 have fewer students
– Please change directly on Path@Penn before the add deadline

tomorrow
– If you have issues with registration, please mail

cis1200@seas.upenn.edu
CIS1200

mailto:cis1200@seas.upenn.edu

CIS1200

Reminder: No Laptops during Lecture
• Laptops closed… minds open

– Although this is a computer science class,
the use of electronic devices – laptops,
phones, etc., during lecture (except for
participating in quizzes) is prohibited

• Why?
– Device users tend to surf/chat/email/

game/text/tweet/etc.
– They also distract those around them
– More effective to take notes by hand
– You’ll get plenty of time in front of your

computer while working on the homework
:-)

CIS1200

Recap: Lists, Recursion, & Tuples

A General Pattern:
Structural Recursion Over Lists

Structural recursion builds an answer from smaller components:

The branch for [] calculates the value (f []) directly.
 – this is the base case of the recursion

The branch for hd::rest calculates
 (f (hd::rest)) given hd and (f rest).
 – this is the inductive case of the recursion

let rec f (l : … list) … : … =
 begin match l with
 | [] -> … (* BASE CASE *)
 | (hd :: rest) ->
 … (f rest) … (* INDUCTIVE CASE *)
 end

f [1; 2] [3;4]
⇒ 1 :: (f [2] [3;4])
⇒ 1 :: 2 :: (f [] [3;4])
⇒ 1 :: 2 :: [3;4]
= [1;2;3;4]

CIS1200

let rec f (l1:int list) (l2:int list) : int list =
 begin match l1 with
 | [] -> l2

| x::xs -> x :: f xs l2
 end

What is the result of this expression?

f [1; 2] [3;4]

CIS1200

What is the type of this expression?

(1, [1], [[1]])

1. int list
2. int list list
3. (int * int list) list
4. int * (int list) * (int list list)
5. (int * int * int) list
6. none (expression is ill typed)

Answer: 4

CIS1200

What is the type of this expression?

[(1,true); (0, false)]

1. int * bool
2. int list * bool list
3. (int * bool) list
4. (int * bool) list list
5. none (expression is ill typed)

Answer: 3

Topics for Today

Types for Structured Data
• Like most programming languages, OCaml offers a

variety of ways of creating and manipulating
structured data

• We have already seen:
– primitive datatypes (int, string, bool, …)
– lists (int list, string list, string list list, …)
– tuples (int * int, int * string, …)

• Today:
– type abbreviations
– user-defined datatypes

CIS1200

Type Abbreviations

A Handy Feature: Type Abbreviations
OCaml lets us name (i.e., give a synonym for) an existing type

• A type abbreviation is interchangeable with its definition
• Abbreviations are useful for naming important concepts

CIS1200

type cents = int
type dollars = int
type money = dollars * cents

type
name definition in terms of existing types

let profit (attendees:int) : money = …

Datatypes and Trees

HW 2 Case Study: Evolutionary Trees
• Problem: reconstruct evolutionary trees* from DNA data.

– What are the relevant abstractions?
– How can we use the language features to define them?
– How do the abstractions help shape the program?

CIS1200*Interested? Check this out:
Dawkins: The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

DNA Computing Abstractions
• Nucleotide
– Adenine (A), Guanine (G), Thymine (T), or Cytosine (C)

• Helix
– a sequence of nucleotides: e.g. AGTCCGATTACAGAGA…
– genetic code for a particular species (human, gorilla, etc)

• Phylogenetic tree
– Binary tree with helices (species)

at the nodes and leaves

CIS1200

Simple User-Defined Datatypes
OCaml lets programmers define new datatypes

The constructors are the values of the datatype
– e.g. A : nucleotide

 [A; G; C] : nucleotide list
CIS1200

type nucleotide =
| A
| C
| G
| T

type day =
 | Sunday
 | Monday
 | Tuesday
 | Wednesday
 | Thursday
 | Friday
 | Saturday

type name
(must be lowercase)

constructor names (tags)
(must be capitalized)

‘type’ keyword

Pattern Matching on Simple Datatypes
Datatype values can be analyzed by pattern matching:

• One case per constructor
– you will get a warning if you leave out a case or list one twice

• As with lists, the pattern syntax follows that of the
datatype values (i.e., the constructors)

CIS1200

let string_of_n (n:nucleotide) : string =
 begin match n with
 | A -> "adenine"
 | C -> "cytosine"
 | G -> "guanine"
 | T -> "thymine"
 end

A Point About Abstraction
• We could represent weekdays by using integers:

– Sunday = 0, Monday = 1, Tuesday = 2, etc.

• But…!
– Integers support different operations than days do:

 Wednesday - Monday = Tuesday (?!?)
 Wednesday * Tuesday = Saturday (?!?)

– There are more integers than days (What day is 17? -3?)

• Confusing integers with days can lead to bugs
– Many “scripting” languages (PHP, Javascript, Perl, Python,…) do

confuse values of different types (true == 1 == “1”), leading to
much misery when debugging…

• For these reasons, most modern languages (Java, C#,
C++, Rust, Swift,…) provide user-defined types

CIS1200

Type Abbreviations II
Abbreviations let us give names to complex types but do
not introduce new abstractions

• i.e., a helix is the same as a list of nucleotides
 let x : helix = [A;C;C] in length x
• Can make code easier to read & write, but does not

provide all the benefits of user-defined types
CIS1200

type helix = nucleotide list
type codon = nucleotide * nucleotide
 * nucleotide

type
name definition in terms of existing types

(no constructors!)

Data-Carrying Constructors

• Datatype constructors can also carry values

• Values of type ‘measurement’ include:
Missing
NucCount (A, 3)
CodonCount ((A,G,T), 17)

CIS1200

type measurement =
 | Missing
 | NucCount of nucleotide * int
 | CodonCount of codon * int

Constructors may take a
tuple of arguments

keyword ‘of’

Pattern Matching on Datatypes
Pattern matching notation combines syntax of tuples
and simple datatype constructors:

• Defining a datatype also defines its patterns
• Datatype patterns bind identifiers (e.g., ‘n’) just like

for lists and tuples
CIS1200

let get_count (m:measurement) : int =
 begin match m with
 | Missing -> 0
 | NucCount(_, n) -> n
 | CodonCount(_, n) -> n
 end

CIS1200

What is the type of this expression?

(A, “A”)

1. nucleotide
2. nucleotide list
3. helix
4. nucleotide * string
5. string * string
6. none (expression is ill typed)

type nucleotide = | A | C | G | T
type helix = nucleotide list

Answer: 4

CIS1200

What is the type of this expression?

[A;C]

1. nucleotide
2. helix
3. nucleotide list
4. string * string
5. nucleotide * nucleotide
6. none (expression is ill typed)

type nucleotide = | A | C | G | T
type helix = nucleotide list

Answer: both 2 and 3

CIS1200

Defining a datatype adds a fresh abstraction as a first-
class concept to your program.

• Constructors explain the shape/structure of the
values.

• Patterns explain how to inspect/name the
components of those values.

• Abstraction means that the type can’t be confused
with other, existing types.

Trees
• We now know how to define types for nucleotides,

codons, DNA helices, etc.
• What about the evolutionary tree itself?

CIS1200

Datatype definitions can mention themselves recursively:

type labeled_tree =
 | LLeaf of helix
 | LNode of labeled_tree * helix * labeled_tree

Recursive User-defined Datatypes

CIS1200

LNode carries a
tuple of values

base constructor

recursive occurrences of
datatype being defined

recursive constructor

Example values of type tree:

let t1 = LLeaf [A;G]
let t2 = LNode (LLeaf [G], [A;T], LLeaf [A])
let t3 =
 LNode (LLeaf [T],
 [T;T],
 LNode (LLeaf [G;C], [G], LLeaf []))

Tree Values

CIS1200

Constructors
(note capitalization)

type labeled_tree =
 | LLeaf of helix
 | LNode of labeled_tree * helix * labeled_tree

CIS1200

How would you construct this tree in OCaml?

1. LLeaf [A;T]
2. LNode (LLeaf [G], [A;T], LLeaf [A])
3. LNode (LLeaf [A], [A;T], LLeaf [G])
4. LNode (LLeaf [T], [A;T],
 LNode (LLeaf [G;C], [G], LLeaf
[]))
5. None of the above

[A] [G]

[A;T]

Answer: 3

Trees are everywhere

Family trees

CIS1200

Organizational charts

CIS1200

Filesystem Folder Structure

CIS1200

CIS1200

Domain Name Hierarchy

edu com gov mil org net

cornell … upenn cisco…yahoo nasa … nsf arpa … navy …

cis seas wharton …

Game trees

CIS1200

Natural-Language Parse Trees

CIS1200

COVID evolutionary tree

CIS1200

Binary Trees

A particular form of tree-structured data

Binary Trees

CIS1200

3

2

0 1

2

3 1

root node

root’s
right child

root’s
left child

left subtree

leaf node

A binary tree is either empty, or a node with at most
two children, both of which are also binary trees.

A leaf is a node whose children are both empty.

empty

Trees are Drawn Upside Down

CIS1200

0

8

1 3

-1

1

7

root node

leaf node

Another Tree

CIS1200

0

8

1 3

-1

1

7

Trees need not be balanced
(some branches may be longer than others)

Binary Trees in OCaml

type tree =
| Empty
| Node of tree * int * tree

3

1 2

4

let t : tree =
 Node (Node (Empty, 1, Empty),
 3,
 Node (Empty, 2,
 Node (Empty, 4, Empty)))

=

CIS1200

Representing trees

5

1

0 3

7

9

8

type tree =
| Empty
| Node of tree * int * tree

Empty

Node (Empty, 0, Empty)

Node (Node (Empty, 0, Empty),
 1,
 Node (Empty, 3, Empty))

CIS1200

Working with binary trees

see tree.ml
treeExamples.ml

Structural Recursion Over Trees
Structural recursion builds an answer from smaller components:

The branch for Empty calculates the value (f Empty) directly.
 – this is the base case of the recursion

The branch for Node(l,x,r) calculates
 (f (Node(l,x,r)) given x and (f l) and (f r).
 – this is the inductive case of the recursion

let rec f (t : tree) … : … =
 begin match t with
 | Empty -> …
 | Node(l,x,r) -> … (f l …) … x … (f r …) …
 end

CIS1200

let rec f (t : tree) … : … =
 begin match t with
 | Empty -> …
 | Node(l,x,r) -> … (f l …) … x … (f r …) …
 end

Tree vs. List Recursion

CIS1200

let rec f (l : … list) … : … =
 begin match l with
 | [] -> …
 | (hd :: rest) -> … hd … (f rest …) …
 end

Two recursive calls, for left and right sub trees,
versus one for lists.

Trees as Containers
• Like lists, trees aggregate ordered data
• As we did for lists, we can write a function to

determine whether a tree contains a particular
element…

CIS1200

Searching for Data in a Tree

• This function searches through the tree, looking for n
• In the worst case, it might have to traverse the entire tree

CIS1200

let rec contains (t:tree) (n:int) : bool =
 begin match t with
 | Empty -> false
 | Node(lt,x,rt) ->
 x = n
 || contains lt n
 || contains rt n
 end

The || operator is Boolean “or”

Search during (contains t 8)

CIS1200

5

1

0 3

7

9

8 ✓

Searching for Data in a Tree
let rec contains (t:tree) (n:int) : bool =
 begin match t with
 | Empty -> false
 | Node(lt,x,rt) -> x = n ||
 (contains lt n) || (contains rt n)
 end

contains (Node(Node(Node (Empty, 0, Empty), 1, Node(Empty, 3, Empty)),
 5, Node (Empty, 7, Empty))) 7

5

1

0 3

7 ✓

5 = 7
|| contains (Node(Node (Empty, 0, Empty), 1, Node(Empty, 3, Empty))) 7
|| contains (Node (Empty, 7, Empty)) 7

(1 = 7 || contains (Node (Empty, 0, Empty)) 7
|| contains (Node(Empty, 3, Empty)) 7)

|| contains (Node (Empty, 7, Empty)) 7

((0 = 7 || contains Empty 7 || contains Empty 7)
|| contains (Node(Empty, 3, Empty)) 7)

|| contains (Node (Empty, 7, Empty)) 7
contains (Node(Empty, 3, Empty)) 7
|| contains (Node (Empty, 7, Empty)) 7
contains (Node (Empty, 7, Empty)) 7 CIS1200

Eliding some steps…

Eliding some steps…

