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CIS 1200 Announcements
• HW01 is due TOMORROW at midnight

– Mandatory in-person check-in (15-20 minutes) with your 
recitation TAs after you submit

– look for them to coordinate

• HW02 will be released soon

• If you would prefer a less-crowded recitation you are 
welcome to switch 
– Section 208, 217, 218, and 222 have fewer students
– Please change directly on Path@Penn before the add deadline 

tomorrow
– If you have issues with registration, please mail 

cis1200@seas.upenn.edu
CIS1200
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Reminder: No Laptops during Lecture
• Laptops closed… minds open

– Although this is a computer science class, 
the use of electronic devices –  laptops, 
phones, etc., during lecture (except for 
participating in quizzes) is prohibited

• Why?
– Device users tend to surf/chat/email/ 

game/text/tweet/etc.
– They also distract those around them
– More effective to take notes by hand
– You’ll get plenty of time in front of your 

computer while working on the homework   
:-)
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Recap: Lists, Recursion, & Tuples



A General Pattern: 
Structural Recursion Over Lists

Structural recursion builds an answer from smaller components:

The branch for [] calculates the value (f []) directly.
 –  this is the base case of the recursion

The branch for  hd::rest calculates  
 (f (hd::rest)) given hd and (f rest).
  – this is the inductive case of the recursion

let rec f (l : … list) … : … = 
  begin match l with 
  | [] -> …               (* BASE CASE *)
  | ( hd :: rest ) -> 
       … (f rest) …       (* INDUCTIVE CASE *)
  end





f [1; 2] [3;4]
⇒ 1 :: (f [2] [3;4])
⇒ 1 :: 2 :: (f [] [3;4])
⇒ 1 :: 2 :: [3;4]
= [1;2;3;4]
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let rec f (l1:int list) (l2:int list) : int list =
 begin match l1 with
 | [] -> l2

| x::xs -> x :: f xs l2
 end

What is the result of this expression?

f [1; 2] [3;4]
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What is the type of this expression?

(1, [1], [[1]])

1. int list
2. int list list
3. (int * int list) list
4. int * (int list) * (int list list)
5. (int * int * int) list
6. none   (expression is ill typed)

Answer: 4
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What is the type of this expression?

[ (1,true); (0, false) ]

1. int * bool
2. int list * bool list
3. (int * bool) list
4. (int * bool) list list
5. none   (expression is ill typed)

Answer: 3



Topics for Today



Types for Structured Data
• Like most programming languages, OCaml offers a 

variety of ways of creating and manipulating 
structured data

• We have already seen:
– primitive datatypes (int, string, bool, … )
– lists (int list,   string list,  string list list,  … )
– tuples (int * int, int * string, …)

• Today: 
– type abbreviations
– user-defined datatypes
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Type Abbreviations



A Handy Feature: Type Abbreviations
OCaml lets us name (i.e., give a synonym for) an existing type

• A type abbreviation is interchangeable with its definition
• Abbreviations are useful for naming important concepts
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type cents = int
type dollars = int
type money = dollars * cents 

type 
name definition in terms of existing types

let profit (attendees:int) : money = …



Datatypes and Trees



HW 2 Case Study: Evolutionary Trees
• Problem: reconstruct evolutionary trees* from DNA data.

– What are the relevant abstractions?
– How can we use the language features to define them?
– How do the abstractions help shape the program?

CIS1200*Interested? Check this out:
Dawkins: The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution 



DNA Computing Abstractions
• Nucleotide
– Adenine (A), Guanine (G), Thymine (T), or Cytosine (C) 

• Helix
– a sequence of nucleotides:    e.g.   AGTCCGATTACAGAGA…
– genetic code for a particular species (human, gorilla, etc)

• Phylogenetic  tree
– Binary tree with helices (species)

at the nodes and leaves
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Simple User-Defined Datatypes
OCaml lets programmers define new datatypes

The constructors are the values of the datatype
– e.g.   A : nucleotide 

  [A; G; C] : nucleotide list
CIS1200

type nucleotide = 
| A
| C
| G
| T

type day = 
  | Sunday
  | Monday
  | Tuesday
  | Wednesday
  | Thursday
  | Friday
  | Saturday

type name
(must be lowercase)

constructor names (tags)
(must be capitalized)

‘type’ keyword



Pattern Matching on Simple Datatypes
Datatype values can be analyzed by pattern matching:

• One case per constructor
– you will get a warning if you leave out a case or list one twice

• As with lists, the pattern syntax follows that of the 
datatype values (i.e., the constructors) 
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let string_of_n (n:nucleotide) : string = 
  begin match n with
  | A -> "adenine"
  | C -> "cytosine"
  | G -> "guanine"
  | T -> "thymine"
  end 



A Point About Abstraction
• We could represent weekdays by using integers:

– Sunday = 0, Monday = 1, Tuesday = 2, etc.

• But…!
– Integers support different operations than days do:

   Wednesday - Monday  = Tuesday       (?!?)
   Wednesday * Tuesday = Saturday (?!?)

– There are more integers than days  (What day is 17? -3?)

• Confusing integers with days can lead to bugs
– Many “scripting” languages (PHP, Javascript, Perl, Python,…) do 

confuse values of different types (true == 1 == “1”), leading to 
much misery when debugging…

• For these reasons, most modern languages (Java, C#, 
C++, Rust, Swift,…) provide user-defined types
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Type Abbreviations II
Abbreviations let us give names to complex types but do 
not introduce new abstractions

• i.e., a helix is the same as a list of  nucleotides
   let x : helix = [A;C;C] in length x
• Can make code easier to read & write, but does not 

provide all the benefits of user-defined types
CIS1200

type helix = nucleotide list
type codon = nucleotide * nucleotide 
                       * nucleotide

type 
name definition in terms of existing types

(no constructors!)



Data-Carrying Constructors

• Datatype constructors can also carry values

• Values of type  ‘measurement’ include:
Missing
NucCount (A, 3)
CodonCount ((A,G,T), 17)

CIS1200

type measurement = 
  | Missing 
  | NucCount   of nucleotide * int  
  | CodonCount of codon * int                 

Constructors may take a 
tuple of arguments

keyword ‘of’



Pattern Matching on Datatypes 
Pattern matching notation combines syntax of tuples 
and simple datatype constructors:

• Defining a datatype also defines its patterns
• Datatype patterns bind identifiers (e.g., ‘n’)  just like 

for lists and tuples
CIS1200

let get_count (m:measurement) : int = 
  begin match m with
  | Missing          -> 0
  | NucCount(_, n)   -> n
  | CodonCount(_, n) -> n
  end 
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What is the type of this expression?

(A, “A”)

1. nucleotide
2. nucleotide list
3. helix
4. nucleotide * string
5. string * string
6. none   (expression is ill typed)

type nucleotide = | A | C | G | T
type helix = nucleotide list

Answer: 4





CIS1200

What is the type of this expression?

[A;C]

1. nucleotide
2. helix
3. nucleotide list
4. string * string
5. nucleotide * nucleotide
6. none   (expression is ill typed)

type nucleotide = | A | C | G | T
type helix = nucleotide list

Answer: both 2 and 3
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Defining a datatype adds a fresh abstraction as a first-
class concept to your program.

• Constructors explain the shape/structure of the 
values.

• Patterns explain how to inspect/name the 
components of those values.

• Abstraction means that the type can’t be confused 
with other, existing types.  



Trees
• We now know how to define types for nucleotides, 

codons, DNA helices, etc.
• What about the evolutionary tree itself?
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Datatype definitions can mention themselves recursively:

type labeled_tree =
 | LLeaf of helix 
 | LNode of labeled_tree * helix * labeled_tree           

Recursive User-defined Datatypes 

CIS1200

LNode carries a 
tuple of values

base constructor

recursive occurrences of 
datatype being defined

recursive constructor



Example values of type  tree:

  
let t1 = LLeaf [A;G]
let t2 = LNode (LLeaf [G], [A;T], LLeaf [A])
let t3 =
  LNode (LLeaf [T], 
        [T;T], 
        LNode (LLeaf [G;C], [G], LLeaf []))

Tree Values

CIS1200

Constructors
(note capitalization)

type labeled_tree =
 | LLeaf of helix 
 | LNode of labeled_tree * helix * labeled_tree           
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How would you construct this tree in OCaml?

1. LLeaf [A;T]
2. LNode (LLeaf [G], [A;T], LLeaf [A])
3. LNode (LLeaf [A], [A;T], LLeaf [G])
4. LNode (LLeaf [T], [A;T], 
     LNode (LLeaf [G;C], [G], LLeaf 
[]))
5. None of the above

[A] [G]

[A;T]

Answer: 3



Trees are everywhere



Family trees
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Organizational charts
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Filesystem Folder Structure
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Domain Name Hierarchy

edu                        com              gov                     mil              org                 net

cornell … upenn                 cisco…yahoo      nasa … nsf         arpa … navy   …

cis     seas    wharton …



Game trees
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Natural-Language Parse Trees
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COVID evolutionary tree
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Binary Trees

A particular form of tree-structured data



Binary Trees
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3

2

0 1

2

3 1

root node

root’s 
right child

root’s 
left child

left subtree

leaf node

A binary tree is either empty, or a node with at most 
two children, both of which are also binary trees.

A leaf is a node whose children are both empty.

empty



Trees are Drawn Upside Down
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Another Tree
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Trees need not be balanced
(some branches may be longer than others)



Binary Trees in OCaml

type tree = 
| Empty 
| Node of tree * int * tree

3

1 2

4

let t : tree = 
  Node (Node (Empty, 1, Empty), 
    3,
    Node (Empty, 2, 
      Node (Empty, 4, Empty))) 

=
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Representing trees

5

1

0 3

7

9

8

type tree = 
| Empty 
| Node of tree * int * tree

Empty 

Node (Empty, 0, Empty)

Node (Node (Empty, 0, Empty),
      1,
      Node (Empty, 3, Empty))
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Working with binary trees

see tree.ml
treeExamples.ml 



Structural Recursion Over Trees
Structural recursion builds an answer from smaller components:

The branch for Empty calculates the value (f Empty) directly.
 –  this is the base case of the recursion

The branch for Node(l,x,r) calculates  
 (f (Node(l,x,r)) given x and (f l) and (f r).
  – this is the inductive case of the recursion

let rec f (t : tree) … : … = 
  begin match t with 
  | Empty -> …
  | Node(l,x,r) -> … (f l …) … x … (f r …) …
  end
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let rec f (t : tree) … : … = 
  begin match t with 
  | Empty -> …
  | Node(l,x,r) -> … (f l …) … x … (f r …) …
  end

Tree vs. List Recursion

CIS1200

let rec f (l : … list) … : … = 
  begin match l with 
  | [] -> …
  | ( hd :: rest ) -> … hd … (f rest …) …
  end

Two recursive calls, for left and right sub trees, 
versus one for lists.



Trees as Containers
• Like lists, trees aggregate ordered data
• As we did for lists, we can write a function to 

determine whether a tree contains a particular 
element…
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Searching for Data in a Tree

• This function searches through the tree, looking for n
• In the worst case, it might have to traverse the entire tree

CIS1200

let rec contains (t:tree) (n:int) : bool =
  begin match t with
  | Empty -> false
  | Node(lt,x,rt) -> 
         x = n 
      || contains lt n 
      || contains rt n
  end

The || operator is Boolean “or”



Search during (contains t 8)

CIS1200

5

1

0 3

7

9

8 ✓



Searching for Data in a Tree
let rec contains (t:tree) (n:int) : bool =
  begin match t with
  | Empty -> false
  | Node(lt,x,rt) -> x = n || 
           (contains lt n) || (contains rt n)
  end

contains (Node(Node(Node (Empty, 0, Empty), 1, Node(Empty, 3, Empty)), 
     5, Node (Empty, 7, Empty))) 7

5

1

0 3

7 ✓

5 = 7 
|| contains (Node(Node (Empty, 0, Empty), 1, Node(Empty, 3, Empty))) 7
|| contains (Node (Empty, 7, Empty)) 7

(1 = 7 || contains (Node (Empty, 0, Empty)) 7
|| contains (Node(Empty, 3, Empty)) 7)

|| contains (Node (Empty, 7, Empty)) 7

((0 = 7 || contains Empty 7 || contains Empty 7)
|| contains (Node(Empty, 3, Empty)) 7)

|| contains (Node (Empty, 7, Empty)) 7
contains (Node(Empty, 3, Empty)) 7
|| contains (Node (Empty, 7, Empty)) 7
contains (Node (Empty, 7, Empty)) 7 CIS1200

Eliding some steps…

Eliding some steps…


