Programming Languages
and Techniques
(C1S1200)

Lecture 5

Datatypes and Trees

CIS 1200 Announcements

HWO1 is due TOMORROW at midnight

— Mandatory in-person check-in (15-20 minutes) with your
recitation TAs after you submit

— look for them to coordinate
HWO02 will be released soon

If you would prefer a less-crowded recitation you are
welcome to switch
— Section 208, 217, 218, and 222 have fewer students

— Please change directly on Path@Penn before the add deadline
tomorrow

— If you have issues with registration, please mail
cis1200@seas.upenn.edu

mailto:cis1200@seas.upenn.edu

How to get help at Office Hours

1. Go to office hours location (schedule available on course website)
TA Office Hours Schedule

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
5-10pm 2-4pm (Virtual OHQ), 5-10pm 6-8pm 7-10pm None 4-6pm 2-6pm
Towne 217 Towne 303 (5-7pm), Towne 217 (7-10pm) Towne 217 Towne 217 Towne 217 Towne 217

2. Enter the office hours queue via OHQ
a. Can be accessed via the course website, you may need to click “add course” and search “CIS 1200”

3. Fill out the template

Ask a Question

Question *

- Problem/Question §: - Steps you've taken to solve the issue (exImpIes include retracing logic with examples, drawing a
picture, using the d)

z

G- annn

Describe Yourself Make sure to mark which
question you’re struggling
with and clearly explain how
you have tried to solve the

. problem on your own before

CIS1200

Reminder: No Laptops during Lecture

* Laptops closed... minds open

— Although this is a computer science class, y X

the use of electronic devices — laptops,
phones, etc., during lecture (except for
participating in quizzes) is prohibited
* Why?

— Device users tend to surf/chat/email/
game/text/tweet/etc.

— They also distract those around them

— More effective to take notes by hand

— You'll get plenty of time in front of your
computer while working on the homework

)

CIS1200

Recap: Lists, Recursion, & Tuples

A General Pattern:
Structural Recursion Over Lists

Structural recursion builds an answer from smaller components:

let rec f (1 : .. 1ist) .. : .. =
begin match 1 with

| [1 -> .. (* BASE CASE *)
| C(hd :: rest) ->

.. (f rest) .. (* INDUCTIVE CASE *)
end

The branch for [] calculates the value (f []) directly.
— this is the base case of the recursion

The branch for hd: :rest calculates
(f (hd::rest))given hdand (f rest).

— this is the inductive case of the recursion

“m

5: Given the definition below, which of the following is correct?

0

(f [1;2] [3;4]) = [3;4;1;2]

(f [1;2] [3;4]) = [1;2;3;4]

(f [1;2] [3;4]) = [4;3;2;1]

(f [1;2] [3;4]) = [1;3;2;4]

none of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

What is the result of this expression?

f [1, 2] [3;4]

let rec f (11:int 1list) (12:int 1list) : int list =
begin match 11 with

| [1 -> 12
| X::xs -=> x :: f xs 12
end

f [1; 2] [3;4]

> 1 :: (f [2] [3:;4])

> 1 :: 2 :: (f [1] [3:;4])
> 1 :: 2 :: [3;4]

= [1;253;4]

CIS1200

“m

5: What is the type of this expression?

0

int

int list

int list list

(int * int list) list

int * (int list) * (int list list)
(int * int * int) list

none (expression is ill typed)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

0%

What is the type of this expression?

(1, [11, [[11D

int list

int list list

(int * int list) list

int * (int list) * (int list list)
(int * int * int) list

none (expression is ill typed)

SR

Answer: 4

CIS1200

“m

5: What is the type of this expression?

0

int * bool

int list * bool list

(int * bool) list

(int * bool) list list

none (expression is ill typed)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

What is the type of this expression?

[(1,true); (@, false)]

int * bool

int list * bool list

(int * bool) list

(int * bool) list list

none (expression is ill typed)

S

Answer: 3

CIS1200

Types for Structured Data

* Like most programming languages, OCaml offers a
variety of ways of creating and manipulating
structured data

 We have already seen:
— primitive datatypes (int, string, bool, ...)
— lists (int list, string list, string list list, ...)
— tuples (int * int, int * string, ...)

* Today:
— type abbreviations

— user-defined datatypes

CIS1200

A Handy Feature: Type Abbreviations

OCaml lets us name (i.e., give a synonym for) an existing type

type cents = int
type dollars = int
type mq?ey = dollars * cents,

type T

name definition in terms of existing types

* Atype abbreviation is interchangeable with its definition

* Abbreviations are useful for naming important concepts

let profit (attendees:int) : money = ..

CIS1200

Datatypes and Trees

HW 2 Case Study: Evolutionary Trees

* Problem: reconstruct evolutionary trees* from DNA data.
— What are the relevant abstractions?
— How can we use the language features to define them?
— How do the abstractions help shape the program?

Enumerated List for
Type for) Double
Nucleotides Helix lots Apes
and lots
G of time l

Greater Apes Lesser Apes

>2H00>>—002>0>—>—0-400

$

orangutan
white-cheeked gibbon

gorilla

siamang

; 4 Rl
chimpanzee pileated gibbon

*Interested? Check this out: CIS1200
Dawkins: The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

DNA Computing Abstractions

* Nucleotide
— Adenine (A), Guanine (G), Thymine (T), or Cytosine (C)

* Helix
— a sequence of nucleotides: e.g. AGTCCGATTACAGAGA...
— genetic code for a particular species (human, gorilla, etc)

* Phylogenetic tree

— Binary tree with helices (species)
at the nodes and leaves

AAAA
ACAT | AAGA

GCAT TCGT TAGA GAGA

Simple User-Defined Datatypes

OCaml lets programmers define new datatypes

type name
‘type’ keyword

type day = // (must/be lowercase)
sunday type nuclebtide =
Monday A
Tuesday C
Wednesday G
Thursday T
Friday :::::EQx
Saturday o~

constructor names (tags)

(must be capitalized)

The constructors are the values of the datatype

—e.g. A : nucleotide
[A; G; C] : nucleotide list

CIS1200

Pattern Matching on Simple Datatypes

Datatype values can be analyzed by pattern matching:

let string_of_n (n:nucleotide) : string =
begin match n with

A -> "adenine"

C -> "cytosine"

G -> "guanine”

T -> "thymine"

end

* One case per constructor
— you will get a warning if you leave out a case or list one twice

* As with lists, the pattern syntax follows that of the
datatype values (i.e., the constructors)

CIS1200

A Point About Abstraction

We could represent weekdays by using integers:
— Sunday = 0,Monday = 1, Tuesday = 2, etc.

But...!

— Integers support different operations than days do:
Wednesday - Monday = Tuesday (?1?)
Wednesday * Tuesday = Saturday (?!?)

— There are more integers than days (What day is 177 -37?)

Confusing integers with days can lead to bugs

— Many “scripting” languages (PHP, Javascript, Perl, Python,...) do
confuse values of different types (true == 1 == “1”), leading to
much misery when debugging...

For these reasons, most modern languages (Java, C#,
C++, Rust, Swift,...) provide user-defined types

Type Abbreviations Il

Abbreviations let us give names to complex types but do
not introduce new abstractions

type helix = nucleotide list
type codon = nucleotide * nucleotide
’\ \ * nucleotide,

Y

type T
name definition in terms of existing types

(no constructors!)
e je., ahelilxisthe same as a list of hucleotides
let x : helix = [A;C;C] in length x

e Can make code easier to read & write, but does not
provide all the benefits of user-defined types

CIS1200

Data-Carrying Constructors

» Datatype constructors can also carry values

type measurement =

Missing

NucCount of nucleotide * int
CodonCount of codon * int

/

/ \ J

ki
keyword ‘of Constructors may take a

tuple of arguments

* Values of type ‘measurement’ include:
Missing
NucCount (A, 3)
CodonCount (CA,G,T), 17

CIS1200

Pattern Matching on Datatypes

Pattern matching notation combines syntax of tuples
and simple datatype constructors:

let get_count (m:measurement) : int =
begin match m with

Missing -> 0

NucCount(_, n) -> n

CodonCount(_, n) ->n
end

e Defining a datatype also defines its patterns

e Datatype patterns bind identifiers (e.g., ‘n’) just like
for lists and tuples

CIS1200

“m

5: What is the type of this expression?

0

nucleotide
nucleotide list
helix

nucleotide * string
string * string

none (expression is ill typed)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

type nucleotide = | A | C | G | T
type helix = nucleotide list

What is the type of this expression?

(A, “A”)

nucleotide

nucleotide list

helix

nucleotide * string

string * string

none (expression is ill typed)

SR

Answer: 4

CIS1200

“m

5. What is the type of the expression [A;C]?

nucleotide

helix

nucleotide list

string * string
nucleotide * nucleotide

none (expression is ill typed)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

type nucleotide = | A | C | G | T
type helix = nucleotide list

What is the type of this expression?

[A;C]

nucleotide

helix

nucleotide list

string * string

nucleotide * nucleotide
none (expression is ill typed)

SR

Answer: both 2 and 3

CIS1200

Defining a datatype adds a fresh abstraction as a first-
class concept to your program.

* Constructors explain the shape/structure of the
values.

* Patterns explain how to inspect/name the
components of those values.

* Abstraction means that the type can’t be confused
with other, existing types.

CIS1200

Trees

 We now know how to define types for nucleotides,
codons, DNA helices, etc.

 What about the evolutionary tree itself?

Enumerated List for

Type for Double |
Nucleotides Helix ots Apes
i and lots
G of time l

Greater Apes Lesser Apes

>2H00>>—002>0>—>—0-400

$

orangutan

white-cheeked gibbon

gorilla

siamang

[N
chimpanzee pileated gibbon

CIS1200

Recursive User-defined Datatypes

Datatype definitions can mention themselves recursively:

base constructor

e

type labg}eﬂ:;ree =
| LLeaf "of helix
| prde of labeled_tree * helix * labeled_tree

/ A /7
recursive constructor LNode carries a
tuple of values

recursive occurrences of

datatype being defined
CIS1200

Tree Values

type labeled_tree =
| LLeaf of helix
| LNode of labeled_tree * helix * labeled_tree

Example values of type tree:

let t1 = LLeaf [A;G]
let t2 = LNode (LLeaf [G], [A;T], LLeaf [A])
let t3 =

LNode (LLéz;§E;ij::::::====>////z

Constructors
[T;T], (note capitalization)

LNode (LLeaf [G;C], [G], LLeaf [1))

CIS1200

How would you construct this tree in OCaml?

[A;T]

VRN
[A] [G]

. LLeaf [A;T]
. LNode (LLeaf [G], [A;T], LLeaf [A]l)
. LNode (LLeaf [A]l, [A;T], LLeaf [G])
. LNode (LLeaf [T], [A;T],

LNode (LLeaf [G;C], [G], LLeaf
[1D)

5. None of the above

S~ WN =

Answer: 3

CIS1200

Trees are everywhera\\\l

Family trees

a
&

=
'Fthu e.[u—:'f o M

AU ks Ynaff e

2 B

> L‘:Eo:x..l[..' fde ‘.‘—

e
A e chanchberg- o)

o 2 e A
- e ; ; y
! g 1C ”4". L{,/,.kné., | - 1;.;13-& ;‘ .I/'my;u e d | .'iu-.:- Canleine ‘,.-,}/;5
' Siefere & = R bury L 184 B inntivig . e
- " A 12 -

£

o g opt s eeis ! (‘l.«n- I
ik rag 2w Lo v Aden s
U imataey . AT

R

Fhiteyey

e~ Ay OO S foproit
. '

s chrawhbosy s

CIS1200

Organizational charts

CoRPORATE HTIERARLHY

|

C ' C - C EL Lé

n3iiesWyelssNeoiin
xL o 4» J,'&x EL

You ARE HERE.j

CIS1200

Filesystem

Folder Structure

v [classes
v [cis110
v [12fa
» [trunk
» [12su
v [cis120
» [11fa
» @ 11sp
v [12fa
» [doc
»] exams

v [hw

assert.ml
- assert.mli

" CommonExportMakefile

" CommonjavaMakefile
CommonMakefile
- CommonOcam|Makefile

CIS1200

Domain Name Hierarchy

/N

edu com gov mil org net
cornell ... upenn cisco..yahoo nasa ... nsf arpa ... navy ...

A YAWANARAVARA

cis seas wharton ..

AN N

Game trees

CIS1200

Natural-Language Parse Trees

S
NP VP
TR ////A\\\\
D N \Y NP

| |
the chef coéks tf/A\ﬁy

| |
the soup

CIS1200

COVID evolutionary tree

=
A varied approach

: el .
Evolution of SARS-CoV-2 in Africa, by date sample was taken T el e

30
® = 0ne genome = 55
Omick
20
Alpha Delta
15
10
Other variants == et
Origin l/ aats tee
L ‘ 0
| 1 1 I | I I | I | I I I | I
b J) F M A M |} J] A S ONID) FMAM] J A S O N
2019 2020 2021
Source: nextstrain.org *3,647 genomes to November 27th

The Economist

CIS1200

A particular form of tree-structured data

Binary Trees

root node
root’s root’s
left child right child

left subtree

€« |eaf node

| €——— empty

A binary tree is either empty, or a node with at most
two children, both of which are also binary trees.

A leaf is a node whose children are both empty. CIS1200

Trees are Drawn Upside Down

root node

v \ N a
I ? <3
\ <0
€ |eaf node

CIS1200

Another Tree

Trees need not be balanced

(some branches may be longer than others) & " c1S1200

Binary Trees in OCaml|

type tree =
| Empty
| Node of tree * int * tree

let t : tree =
Node (Node (Empty, 1, Empty),
3,
Node (Empty, 2,
Node (Empty, 4, Empty)))

CIS1200 I."""n:

Representing trees

type tree =
| Empty
| Node of tree * int * tree

Node (Node (Empty, @, Empty),
1,
Node (Empty, 3, Empty))

Node (Empty, @, Empty) é

Emptye:;

{CIS1200

Working with binary trees

see tree.ml

treeExamples.ml

Structural Recursion Over Trees

Structural recursion builds an answer from smaller components:

let rec f (t : tree) .. : .. =
begin match t with

| Empty -> ..
| Node(l,x,r) > .. (f1.) . x.(fr.).
end

The branch for Empty calculates the value (f Empty) directly.
— this is the base case of the recursion

The branch for Node(1l,x,r) calculates
(f (Node(l,x,r)) given Xand (f 1) and (f r).
— this is the inductive case of the recursion

CIS1200

Tree vs. List Recursion

let rec f (t : tree) .. : .. =
begin match t with
| Empty -> ..
| Node(l,x,r) -> .. (f1.) . x . (fr.).

end \ /

Two recursive calls, for left and right sub trees,
versus one for lists.

let rec f (1 : .. list) .. : .
begin match 1 with

| [] -> ..
| (hd :: rest) -> .. hd .. (f rest ..) ..

end

CIS1200

Trees as Containers

* Like lists, trees aggregate ordered data

 As we did for lists, we can write a function to
determine whether a tree contains a particular

element...

Searching for Data in a Tree

let rec contains (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) ->
X = n

| | contains 1t n

| | contains rt n
end

* This function searches through the tree, looking for n

* |nthe worst case, it might have to traverse the entire tree

o ”

The | | operator is Boolean “or

CIS1200

Search during (contains t 8)

OOOOOOO

Searching for Data in a Tree

let rec contains (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) -> x =n ||
(contains 1t n) Il (contains rt n)

end

5, Node (Empty, 7, Empty))) 7

=7
| contains (Node(Node (Empty, @, Empty), 1, Node(Empty, 3, Empty))) 7
| contains (Node (Empty, 7, Empty)) 7

(1 =7 |l contains (Node (Empty, @, Empty)) 7
| | contains (Node(Empty, 3, Empty)) 7)
| | contains (Node (Empty, 7, Empty)) 7

(@ = 7 |l contains Empty 7 || contains Empty 7)
| | contains (Node(Empty, 3, Empty)) 7)
| | contains (Node (Empty, 7, Empty)) 7

Eliding some steps...

contains (Node(Empty, 3, Empty)) 7
|| contains (Node (Empty, 7, Empty)) 7 -
Eliding some steps... —

contains (Node (Empty, 7, Empty)) 7 ;;200

