
Programming Languages 
and Techniques

(CIS1200)

Lecture 7

Binary Search Trees
(Chapters 7 & 8)



Announcements

• Check out the entry survey on Ed
– Help us get to know you!

• HW2 due Tuesday at 11.59pm

• Read Chapters  7 & 8 
– Binary Search Trees

• Midterm 1:  Friday, September 27th

– Details will be posted on Ed and announced in class
– Look for announcements about review session, etc.
– Content: HW 1 – 3, Chapters 1-10 of lecture notes
– Contact cis1200@seas.upenn.edu with concerns
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Recap: Ordered Trees

Big idea: find things faster by searching less
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Key Insight:  
  Ordered data can be searched more quickly

– This is why telephone books are arranged alphabetically
– Requires the ability to focus on (roughly) half  of the current data



Binary Search Trees
• A binary search tree (BST) is a binary tree with some 

additional invariants:

• The BST invariant means that container functions can take 
time proportional to the height instead of the size of the tree.
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• Node(lt,x,rt) is a BST if
-  lt and rt are both BSTs
-  all nodes of lt are < x
-  all nodes of rt are > x

• Empty is a BST



An Example Binary Search Tree
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Note that the BST
invariants hold for 
this tree.

• Node(lt,x,rt) is a BST if
-  lt and rt are both BSTs
-  all nodes of lt are < x
-  all nodes of rt are > x

• Empty is a BST



Searching a BST

• The BST invariants guide the search.
• Note that lookup may return an incorrect answer if the input 

is not a BST!
– This function assumes that the BST invariants hold of t.

(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
  begin match t with
  | Empty -> false
  | Node(lt,x,rt) -> 
      if x = n then true
      else if n < x then lookup lt n
      else lookup rt n
  end
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Search in a BST: (lookup t 8)
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Manipulating BSTs

Inserting an element

insert : tree -> int -> tree

"insert t x" returns a new tree containing x 
and all of the elements of t



Inserting into a BST
• Challenge: can we make sure that the result of insert 

really is a BST? 
– i.e., the new element needs to be in the right place!

• Payoff: we can build a BST containing any set of 
elements 
– Starting with Empty, apply insert repeatedly
– If insert preserves the BST invariants, then any tree we get 

from it will be a BST by construction 
• No need to check!

– Later: we can also “rebalance” the tree to make lookup efficient 
(NOT in CIS 1200; see CIS 1210) First step: find the right place…
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Inserting a new node: (insert t 4)

5

1

0 3

7

9

8

<

<

<

>

> >

4 < 5

4 > 1

4 > 3

?

CIS1200



Inserting a new node: (insert t 4)
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Inserting into a BST

• Note similarity to searching the tree
• If t is a BST, the result is also a BST  (why?)
• The result is a new tree with (possibly) one more Node; the 

original tree is unchanged

(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
  begin match t with
  | Empty -> Node(Empty,n,Empty)
  | Node(lt,x,rt) -> 
   if x = n then t
     else if n < x then Node(insert lt n, x, rt)
     else Node(lt, x, insert rt n)
  end

Critical point!



Manipulating BSTs

Deleting an element

delete : tree -> int -> tree

"delete t x" returns a tree containing  
all of the elements of t except for x



Deletion – No Children: (delete t 3)
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Deletion – No Children: (delete t 3)
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If the node to be deleted has no 
children, simply replace it by 
the Empty tree.
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Deletion – One Child: (delete t 7)

5

1

0 3

7

9

8

<

<

<

>

> >

7 > 5

CIS1200



Deletion – One Child: (delete t 7)
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If the node to be delete has one 
child, replace the deleted node
by its child.
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Deletion – Two Children: (delete t 5)
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Deletion – Two Children: (delete t 5)
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If the node to be delete has two 
children, promote the maximum 
child of the left tree.
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How to Find the Maximum Element?
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How to Find the Maximum Element?
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Just for fun, how 
do we find the 
max element of 
the whole tree?
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Tree Max

• BST invariant guarantees that the maximum-value node is farthest 
to the right

• Note that tree_max is a partial* function
– Fails when called with an empty tree

• Fortunately, we never need to call tree_max on an empty tree
– This is a consequence of the BST invariants and the case analysis done by 

the delete function

let rec tree_max (t:tree) : int =
  begin match t with
  | Node(_,x,Empty) -> x
  | Node(_,_,rt) -> tree_max rt 
  | _ -> failwith “tree_max called on Empty”
  end

* Partial, in this context, means “not defined for all inputs”CIS1200



Code for BST delete

bst.ml



Deleting From a BST
let rec delete (t: tree) (n: int) : tree =
  begin match t with  
  | Empty -> Empty
  | Node(lt, x, rt) ->
    if x = n then
      begin match (lt, rt) with
      | (Empty, Empty) -> Empty
      | (Node _, Empty) -> lt
      | (Empty, Node _) -> rt
      | _ -> let m = tree_max lt in
        Node(delete lt m, m, rt)
    end
    else if n < x then Node(delete lt n, x, rt)
    else Node(lt, x, delete rt n)
end

See bst.ml
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Subtleties of the Two-Child Case
• Suppose Node(lt,x,rt) is to be deleted and lt and 
rt are both themselves nonempty trees.

• Then:  
1. There exists a maximum element, m, of lt   (Why?)
2. Every element of rt is greater than m   (Why?)

• To promote m we replace the deleted node by:
         Node(delete lt m, m, rt)
– i.e., we recursively delete m from lt and relabel the root 

node m
– The resulting tree satisfies the BST invariants
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If we insert a label n into a BST and then 
immediately delete n, do we always get 
back a tree of exactly the same shape?

1. yes
2. no

Answer: no    (what if the node was in the tree to begin with?)CIS1200





If we insert a value n into a BST that does 
not already contain n and then 
immediately delete n, do we always get 
back a tree of exactly the same shape?

1. yes
2. no

Answer: yesCIS1200





If we delete n from a BST (containing n) and 
then immediately insert n again, do we 
always get back a tree of exactly the same 
shape?

1. yes
2. no

Answer: no   (e.g., what if we delete the item at the root node?)
CIS1200



BST Performance
•  lookup takes time proportional to the height of the tree.

– not the size of the tree (as it did with contains for unordered trees)

• In a balanced tree, the lengths of the paths from the root to 
each leaf are (almost) the same.
– no leaf is too far from the root
– the height of the BST is minimized
– the height of a balanced binary tree is roughly log2(N) where N is the 

number of nodes in the tree
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Demo

bst.ml – compare contains and lookup



Generic Functions and Data

Wow, implementing BSTs took quite a bit of typing... Do we 
have to do it all again if we want to use BSTs containing 

strings, and again for characters, and again for floats, and…?
or

How not to repeat yourself, Part I.



Structurally Identical Functions
• Observe: many functions on lists, trees, and other datatypes 

don’t depend on the contents, only on the structure. 
• Compare:
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let rec length (l: int list) : int =
  begin match l with
  | [] -> 0
  | _::tl -> 1 + length tl
  end

let rec length (l: string list) : int =
  begin match l with
  | [] -> 0
  | _::tl -> 1 + length tl
  end

The functions are
identical, except
for the type 
annotation.



• OCaml allows defining functions with generic types

• Notation:   'a is a  type variable, indicating that the function 
length can be used on a  t list for any type t.

• Examples:
– length [1;2;3]           use length on an int list
– length [“a”;”b”;”c”]     use length on a string list

• Idea: OCaml fills in 'a whenever length is used 

let rec length (l:'a list) : int =
  begin match l with
  | [] -> 0
  | _::tl -> 1 + (length tl)
  end

Notation for Generic Types
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Generic List Append
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let rec append (l1:'a list) (l2:'a list) : 'a list =
  begin match l1 with
  | [] -> l2
  | h::tl -> h::(append tl l2)
  end

Note that the two input 
lists must have the same 
type of elements.

The return type is the 
same as the inputs.

Pattern matching works over generic types!

In the body of the branch:
     h has type 'a 
     tl has type 'a list



let rec zip (l1:int list) (l2:string list) 
          : (int*string) list =
  begin match (l1,l2) with
  | (h1::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
  | _ -> []
  end

Zip function

zip [1;2;3] ["a";"b";"c"] 
      ⟼ [(1,"a"); (2,"b"); (3,"c")]

• Does it matter what type of lists these are?
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• Combine two lists into one list 
– ignore elements from longer list if they are not the same length



Generic Zip

• Distinct type variables can be instantiated differently:

                        zip [1;2;3] [“a”;”b”;”c”] 
• Here, 'a is instantiated to int, 'b to string
• Result  is
          [(1,“a”);(2,“b”);(3,“c”)]
        of type (int * string) list
CIS1200

let rec zip (l1:'a list) (l2:'b list) : ('a*'b) list =
  begin match (l1,l2) with
  | (h1::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
  | _ -> []
  end

Functions can operate 
over multiple generic 
types.

Intuition: OCaml tracks 
instantiations of type variables
('a and 'b) and makes sure they 
are used  consistently



Generic Zip

• Distinct type variables do not need to be instantiated differently:

                        zip [1;2;3] [4;5;6] 
• Here, 'a is instantiated to int, 'b to int
• Result  is
          [(1,4);(2,5);(3,6)]
        of type (int * int) list
CIS1200

let rec zip (l1:'a list) (l2:'b list) : ('a*'b) list =
  begin match (l1,l2) with
  | (h1::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
  | _ -> []
  end

Functions can operate 
over multiple generic 
types.

Intuition: OCaml tracks 
instantiations of type variables
('a and 'b) and makes sure they 
are used  consistently



• Recall our integer tree type:

• We can define a generic version by adding a type parameter, 
like this:

type 'a tree = 
| Empty
| Node of 'a tree * 'a * 'a tree

User-Defined Generic Datatypes
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type tree = 
| Empty
| Node of tree * int * tree

Parameter  'a 
used here

Note that the recursive 
uses of tree also 
mention 'a



• BST operations can be generic too; the only change is to the 
type annotation

User-Defined Generic Datatypes
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Equality and comparison are generic — they work for any 
type of data.

(* Insert n into the BST t *)

let rec insert (t:'a tree) (n:'a) : 'a tree =
  begin match t with
  | Empty -> Node(Empty,n,Empty)
  | Node(lt,x,rt) -> 
  if x = n then t
       else if n < x then Node(insert lt n, x, rt)
       else Node(lt, x, insert rt n)
  end
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Does the following function typecheck?

 

1. yes
2. no

let f (l : 'a list) : 'b list =
begin match l with
| [] -> true::l
| _::rest -> 1::l
end

Answer: no: even though the return type is generic, the two branches
must agree (so that ‘b can be consistently instantiated).
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Does the following code typecheck?

 

1. yes
2. no

let f (x : 'a) : 'a =
  x + 1

;; print_endline (f “hello”)

Answer: no, the type annotations and uses of f aren’t consistent.

However it is a bit subtle: without the use (f "hello") the code would be correct – 
so long as all uses of f provide only 'int' the code is consistent!  Despite the 
"generic" type annotation, f really has type int -> int.


