
Programming Languages
and Techniques

(CIS1200)

Lecture 7

Binary Search Trees
(Chapters 7 & 8)

Announcements

• Check out the entry survey on Ed
– Help us get to know you!

• HW2 due Tuesday at 11.59pm

• Read Chapters 7 & 8
– Binary Search Trees

• Midterm 1: Friday, September 27th

– Details will be posted on Ed and announced in class
– Look for announcements about review session, etc.
– Content: HW 1 – 3, Chapters 1-10 of lecture notes
– Contact cis1200@seas.upenn.edu with concerns

CIS1200

mailto:cis1200@seas.upenn.edu

Recap: Ordered Trees

Big idea: find things faster by searching less

CIS1200

Key Insight:
 Ordered data can be searched more quickly

– This is why telephone books are arranged alphabetically
– Requires the ability to focus on (roughly) half of the current data

Binary Search Trees
• A binary search tree (BST) is a binary tree with some

additional invariants:

• The BST invariant means that container functions can take
time proportional to the height instead of the size of the tree.

CIS1200

• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

An Example Binary Search Tree

5

1

0 3

7

9

8

<

<

<

>

> >

Note that the BST
invariants hold for
this tree.

• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

Searching a BST

• The BST invariants guide the search.
• Note that lookup may return an incorrect answer if the input

is not a BST!
– This function assumes that the BST invariants hold of t.

(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
 begin match t with
 | Empty -> false
 | Node(lt,x,rt) ->
 if x = n then true
 else if n < x then lookup lt n
 else lookup rt n
 end

CIS1200

Search in a BST: (lookup t 8)

5

1

0 3

7

9

8

<

<

<

>

> >

8 > 5

8 > 7

8 < 9

✓

CIS1200

Manipulating BSTs

Inserting an element

insert : tree -> int -> tree

"insert t x" returns a new tree containing x
and all of the elements of t

Inserting into a BST
• Challenge: can we make sure that the result of insert

really is a BST?
– i.e., the new element needs to be in the right place!

• Payoff: we can build a BST containing any set of
elements
– Starting with Empty, apply insert repeatedly
– If insert preserves the BST invariants, then any tree we get

from it will be a BST by construction
• No need to check!

– Later: we can also “rebalance” the tree to make lookup efficient
(NOT in CIS 1200; see CIS 1210) First step: find the right place…

CIS1200

Inserting a new node: (insert t 4)

5

1

0 3

7

9

8

<

<

<

>

> >

4 < 5

4 > 1

4 > 3

?

CIS1200

Inserting a new node: (insert t 4)

5

0 3

7

9

1

8

<

<

<

>

> >

4

3

1

5

Inserting into a BST

• Note similarity to searching the tree
• If t is a BST, the result is also a BST (why?)
• The result is a new tree with (possibly) one more Node; the

original tree is unchanged

(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
 begin match t with
 | Empty -> Node(Empty,n,Empty)
 | Node(lt,x,rt) ->
 if x = n then t
 else if n < x then Node(insert lt n, x, rt)
 else Node(lt, x, insert rt n)
 end

Critical point!

Manipulating BSTs

Deleting an element

delete : tree -> int -> tree

"delete t x" returns a tree containing
all of the elements of t except for x

Deletion – No Children: (delete t 3)

5

1

0 3

7

9

8

<

<

<

>

> >

3 < 5

3 > 1

CIS1200

Deletion – No Children: (delete t 3)

5

1

0

7

9

8

<

<

<

>

>

If the node to be deleted has no
children, simply replace it by
the Empty tree.

CIS1200

Deletion – One Child: (delete t 7)

5

1

0 3

7

9

8

<

<

<

>

> >

7 > 5

CIS1200

Deletion – One Child: (delete t 7)

5

1

0 3

9

8

<

< <

>

>

If the node to be delete has one
child, replace the deleted node
by its child.

CIS1200

Deletion – Two Children: (delete t 5)

5

1

0 3

7

9

8

<

<

<

>

> >

CIS1200

Deletion – Two Children: (delete t 5)

3

1

0

7

9

8

<

<

<

>

>

3

If the node to be delete has two
children, promote the maximum
child of the left tree.

CIS1200

How to Find the Maximum Element?

5

1

0 3

7

9

8

What is the max
element of this
subtree?

CIS1200

How to Find the Maximum Element?

5

1

0 3

7

9

8

Just for fun, how
do we find the
max element of
the whole tree?

CIS1200

Tree Max

• BST invariant guarantees that the maximum-value node is farthest
to the right

• Note that tree_max is a partial* function
– Fails when called with an empty tree

• Fortunately, we never need to call tree_max on an empty tree
– This is a consequence of the BST invariants and the case analysis done by

the delete function

let rec tree_max (t:tree) : int =
 begin match t with
 | Node(_,x,Empty) -> x
 | Node(_,_,rt) -> tree_max rt
 | _ -> failwith “tree_max called on Empty”
 end

* Partial, in this context, means “not defined for all inputs”CIS1200

Code for BST delete

bst.ml

Deleting From a BST
let rec delete (t: tree) (n: int) : tree =
 begin match t with
 | Empty -> Empty
 | Node(lt, x, rt) ->
 if x = n then
 begin match (lt, rt) with
 | (Empty, Empty) -> Empty
 | (Node _, Empty) -> lt
 | (Empty, Node _) -> rt
 | _ -> let m = tree_max lt in
 Node(delete lt m, m, rt)
 end
 else if n < x then Node(delete lt n, x, rt)
 else Node(lt, x, delete rt n)
end

See bst.ml

CIS1200

Subtleties of the Two-Child Case
• Suppose Node(lt,x,rt) is to be deleted and lt and
rt are both themselves nonempty trees.

• Then:
1. There exists a maximum element, m, of lt (Why?)
2. Every element of rt is greater than m (Why?)

• To promote m we replace the deleted node by:
 Node(delete lt m, m, rt)
– i.e., we recursively delete m from lt and relabel the root

node m
– The resulting tree satisfies the BST invariants

CIS1200

If we insert a label n into a BST and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

Answer: no (what if the node was in the tree to begin with?)CIS1200

If we insert a value n into a BST that does
not already contain n and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

Answer: yesCIS1200

If we delete n from a BST (containing n) and
then immediately insert n again, do we
always get back a tree of exactly the same
shape?

1. yes
2. no

Answer: no (e.g., what if we delete the item at the root node?)
CIS1200

BST Performance
• lookup takes time proportional to the height of the tree.

– not the size of the tree (as it did with contains for unordered trees)

• In a balanced tree, the lengths of the paths from the root to
each leaf are (almost) the same.
– no leaf is too far from the root
– the height of the BST is minimized
– the height of a balanced binary tree is roughly log2(N) where N is the

number of nodes in the tree

1
2

3
4

5
6

5

1

0 3

7

9

balanced unbalanced

CIS1200

Demo

bst.ml – compare contains and lookup

Generic Functions and Data

Wow, implementing BSTs took quite a bit of typing... Do we
have to do it all again if we want to use BSTs containing

strings, and again for characters, and again for floats, and…?
or

How not to repeat yourself, Part I.

Structurally Identical Functions
• Observe: many functions on lists, trees, and other datatypes

don’t depend on the contents, only on the structure.
• Compare:

CIS1200

let rec length (l: int list) : int =
 begin match l with
 | [] -> 0
 | _::tl -> 1 + length tl
 end

let rec length (l: string list) : int =
 begin match l with
 | [] -> 0
 | _::tl -> 1 + length tl
 end

The functions are
identical, except
for the type
annotation.

• OCaml allows defining functions with generic types

• Notation: 'a is a type variable, indicating that the function
length can be used on a t list for any type t.

• Examples:
– length [1;2;3] use length on an int list
– length [“a”;”b”;”c”] use length on a string list

• Idea: OCaml fills in 'a whenever length is used

let rec length (l:'a list) : int =
 begin match l with
 | [] -> 0
 | _::tl -> 1 + (length tl)
 end

Notation for Generic Types

CIS1200

Generic List Append

CIS1200

let rec append (l1:'a list) (l2:'a list) : 'a list =
 begin match l1 with
 | [] -> l2
 | h::tl -> h::(append tl l2)
 end

Note that the two input
lists must have the same
type of elements.

The return type is the
same as the inputs.

Pattern matching works over generic types!

In the body of the branch:
 h has type 'a
 tl has type 'a list

let rec zip (l1:int list) (l2:string list)
 : (int*string) list =
 begin match (l1,l2) with
 | (h1::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
 | _ -> []
 end

Zip function

zip [1;2;3] ["a";"b";"c"]
 ⟼ [(1,"a"); (2,"b"); (3,"c")]

• Does it matter what type of lists these are?

CIS1200

• Combine two lists into one list
– ignore elements from longer list if they are not the same length

Generic Zip

• Distinct type variables can be instantiated differently:

 zip [1;2;3] [“a”;”b”;”c”]
• Here, 'a is instantiated to int, 'b to string
• Result is
 [(1,“a”);(2,“b”);(3,“c”)]
 of type (int * string) list
CIS1200

let rec zip (l1:'a list) (l2:'b list) : ('a*'b) list =
 begin match (l1,l2) with
 | (h1::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
 | _ -> []
 end

Functions can operate
over multiple generic
types.

Intuition: OCaml tracks
instantiations of type variables
('a and 'b) and makes sure they
are used consistently

Generic Zip

• Distinct type variables do not need to be instantiated differently:

 zip [1;2;3] [4;5;6]
• Here, 'a is instantiated to int, 'b to int
• Result is
 [(1,4);(2,5);(3,6)]
 of type (int * int) list
CIS1200

let rec zip (l1:'a list) (l2:'b list) : ('a*'b) list =
 begin match (l1,l2) with
 | (h1::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
 | _ -> []
 end

Functions can operate
over multiple generic
types.

Intuition: OCaml tracks
instantiations of type variables
('a and 'b) and makes sure they
are used consistently

• Recall our integer tree type:

• We can define a generic version by adding a type parameter,
like this:

type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

User-Defined Generic Datatypes

CIS1200

type tree =
| Empty
| Node of tree * int * tree

Parameter 'a
used here

Note that the recursive
uses of tree also
mention 'a

• BST operations can be generic too; the only change is to the
type annotation

User-Defined Generic Datatypes

CIS1200

Equality and comparison are generic — they work for any
type of data.

(* Insert n into the BST t *)

let rec insert (t:'a tree) (n:'a) : 'a tree =
 begin match t with
 | Empty -> Node(Empty,n,Empty)
 | Node(lt,x,rt) ->
 if x = n then t
 else if n < x then Node(insert lt n, x, rt)
 else Node(lt, x, insert rt n)
 end

CIS1200

Does the following function typecheck?

1. yes
2. no

let f (l : 'a list) : 'b list =
begin match l with
| [] -> true::l
| _::rest -> 1::l
end

Answer: no: even though the return type is generic, the two branches
must agree (so that ‘b can be consistently instantiated).

CIS1200

Does the following code typecheck?

1. yes
2. no

let f (x : 'a) : 'a =
 x + 1

;; print_endline (f “hello”)

Answer: no, the type annotations and uses of f aren’t consistent.

However it is a bit subtle: without the use (f "hello") the code would be correct –
so long as all uses of f provide only 'int' the code is consistent! Despite the
"generic" type annotation, f really has type int -> int.

