Programming Languages
and Techniques
(C1S1200)

Lecture 9

Higher-order functions: transform and fold

Lecture notes: Chapter 9

Announcements (1)

e Please complete the intro survey (link on Ed)
available this afternoon

e Homework 3 available this afternoon

— Practice with BSTs, generic functions, first-class functions,
and abstract types

— Due Tuesday, September 24t at 11:59pm

— Start early!
* Problems 1-4 can be done after class today
* Problems 5-8 can be done after class on Friday

 Reading: Chapters 8, 9, and 10 of the lecture notes

Announcements (2)

 Midterm 1: Friday, September 27th

— Coverage: up to Wednesday, Sep 25th (Chapters 1-10)

— During lecture
Last names: A-Z Meyerson Hall B1

— 60 minutes; closed book, closed notes
— Review Material

e old exams on the web site (“schedule” tab)
— Review Session

* Wednesday, September 25, 7:00-9:00pm, Towne 100
(will be recorded)

* Review Videos will be posted this weekend

First-class Functions

function body

let f : t/7> u = fun (x:t) -> <body>
| J
i

function type anonymous function value

Functions are first-class values in OCaml: they can be
manipulated like any other value.

They have a type that specifies the input and output types.

The “fun” keyword introduces an anonymous function.

— Sometimes called lambdas* or closures

*The term “lambda” comes from Church’s lambda calculus.

2=1+1

A function that takes two arguments...

int -> 1nt -> 1nt

has the same type as a function that takes one argument
and returns a function that takes one argument

int -> (int -> 1int)

This is actually useful!

Multiple Arguments

We can decompose a standard function definition

let sum (x : int) (y:int) : int = X + vy

into parts:

let sum = fun (x:1int) ->\fun (y:int) -> x + yl}
&» ~

Y \YI

that returns a function value

define a variable with

create a function value
that value

The two definitions of sum have the same type and behave the same!

let sum : int -> int -> int

Partial Application

let sum (x : int) (y:int) : int

X+Yy

sum 3

— (fun (xX:int) -> fun (y:int) -> X + y) 3 definition

— fun (y:int) -> 3 +y

AN

the result of a “partially applied function” is
itself a function (that can later be applied)

substitute 3 for x

Functions that return functions

let sum (x : int) (y:int) : int = x + y

let sum = fun (x:int) -> fun (y:int) -> X + y

sum 3
— (fun (xX:int) -> fun (y:int) -> X + y) 3 definition
— fun (y:int) -> 3 +y substitute 3 for x

AN

the result of a “partially applied function” is
itself a function (that can later be applied)

A fundamental design pattern
using first-class functions

Phone book example

type entry = string * int
let phone_book = [("Steve", 2155559092), ..]

let rec get_names (p : entry list) : string list =
begin match p with

| ((name, num)::rest) -> name :: get_names rest
[-> L[]
end

let rec get_numbers (p : entry list) : int list =
begin match p with

| ((name, num)::rest) -> num :: get_numbers rest
[-> L[]
end

Can we use first-class functions

to refactor code to share common
structure?

Refactoring

let rec helper (f:entry -> 'b) (p:entry list) : 'b list =
begin match p with
| (entry::rest) -> f entry :: helper f rest
| [1 -> L[]

end

let get_names (p : entry list) : string list =
helper fst p

let get_numbers (p : entry 1li
helper snd p

/

: int list =

/ AN

fst and snd are functions that
access the parts of a tuple:

let fst (X,y) = X
let snd (x,y) =y

The argument f determines
what happens with the entry at the
head of the list

Going even more generic

let rec helper (f:entry -> 'b) (p:entry list) : 'b list =
begin match p with
| (entry::rest) -> f entry :: helper f rest
| [1 -> L[]

end

let get_names (p : entry list) : string list =
helper fst p

let get_numbers (p : entry list) : int list =
helper snd p

Now let's make it work for all lists,
not just lists of entries...

Going even more generic

let rec helper (f:'a -> 'b) (p:'a list) : ’b list =
begin match p with
| (entry::rest) -> f entry :: helper f rest
I [1 -> [

end

let get_names (p : entry list) : string list =
helper fst p

let get_numbers (p : entry list) : int list =
helgfr snd p

\

N T

'a stands for (string*int)

'b stands for int snd : (string*int) -> 1int

Transforming Lists

let rec transform (f: 'a->'b) (1:'a 1list) : 'b list =
begin match 1 with

0 > [
| h::t -> (f h)::(transform f t)
end

List transformation
a.k.a. “mapping* a function across a list”

* foundational function for programming with lists
 part of OCaml standard library (called List.map)
* used over and over again

(e.g., Google’s famous map-reduce infrastructure)

*many languages (including OCaml) use the terminology “map” for the function that transforms a list by
applying a function to each element. Don’t confuse List.map with “finite map”.

“m

9: What is the value of this expresssion?

0

[0;-1; 1;-2]

[1]

[1;1;0;1]

[false; false; true; false]

runtime error

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

What is the value of this expresssion?

transform (fun (x:int) -> x > 0)
[0 ; -1; 1; -2]

1. [0; -1; 1; -2]
2. [1]

3. [1;1;0; 1]
4

5

. [false; false; true; false]

. runtime error

ANSWER: 4

The ‘fold’ design pattern

a general-purpose recursive function

Refactoring code, again

Is there a pattern in the definition of these two functions?

let rec exists (1 : bool list) : bool =
begin match 1 with

| [] -> false
| h :: £t -> h || exists t
end

let rec acid_length (1 : acid list) : int =
begin match 1 with
| [] -> 0
| h :: t -> 1 + acid_length t
end

Refactoring code, again

Is there a pattern in the definition of these two functions?

let rec exists (1 : bool 1list) : bool =
begin match 1 with

| [-> false
| h :: t -> h ||l exists base case:
end Simple answer when
\\ _ the list is empty
let rec acid_length (1 : ist) : int =
begin match 1 wi

| [1 -> 0 combine step:
| h :: t -> 1 + acid_length t Do something with
end the head of the list

and the result of the

recursive call

Can we factor out this pattern using first-class functions?

Preparation

let rec exists (1 : bool list) : bool =
begin match 1 with

| [] -> false
| h :: t -> h || exists t
end

let rec acid_length (1 : acid list) : int =

begin match 1 with

| [1 -> 0

| h :: t -> 1 + acid_length t
end

Preparation: introduce a helper

let rec helper (1 : bool 1ist) : bool =

begin match 1 with

| [1 -> false
| h :: t -> h || helper t
end

let exists (1 : bool 1list) = helper 1

let rec helper (1 : acid list) : int =

begin match 1 with

| [] -> 0

| h :: t -> 1 + helper t
end

let acid_length (1 : acid 1list) = helper 1

First: introduce a helper
function that will
(eventually) become the
same for both definitions.

Abstracting with respect to Base

let rec helper (1 : bool 1ist) : bool =
begin match 1 with

| [] -> false
| h :: t -> h || helper t
end

let exists (1 : bool 1list) = helper 1

let rec helper (1 : acid list) : int =
begin match 1 with
| [1 -> @
| h :: t -> 1 + helper t
end

let acid_length (1 : acid 1list) = helper 1

Abstracting with respect to Base

let rec helper (base : bool) (1 : bool 1list) : bool =
begin match 1 with

| [] -> base
| h :: t -> h || helper base t
end

let exists (1 : bool list) = helper false 1

let rec helper (base : int) (1 : acid list) : int =
begin match 1 with

| [] -> base
| h :: t -> 1 + helper base t
end

let acid_length (1 : acid 1list) = helper 0 1

Abstracting with respect to Combine

let rec helper (base : bool) (1 : bool 1list) : bool =
begin match 1 with

| [] -> base
| h :: t -> h || helper base t
end

let exists (1 : bool list) = helper false 1

let rec helper (base : int) (1 : acid list) : int =
begin match 1 with

| [] -> base
| h :: t -> 1 + helper base t
end

let acid_length (1 : acid 1list) = helper 0 1

Abstracting with respect to Combine

let rec helper (base : bool) (1 : bool 1list) : bool =
begin match 1 with

| [] -> base
| h :: t -> h || helper base t
end

let exists (1 : bool list) = helper false 1

let rec helper (base : int) (1 : acid list) : int =
begin match 1 with

| [] -> base
| h :: t -> 1 + helper base t
end

let acid_length (1 : acid 1list) = helper 0 1

Abstracting with respect to Combine

let rec helper (combine : bool -> bool -> bool)
(base : bool) (1 : bool list) : bool =
begin match 1 with

| [] -> base
| h :: t -> combine h Chelper combine base t)
end

let exists (1 : bool list) =
helper (fun Ch:bool) (acc:bool) -> h || acc) false 1

let rec helper (combine : acid -> int -> int)
(base : int) (1 : acid list) : int =
begin match 1 with

| [] -> base
| h :: t -> combine h Chelper combine base t)
end

let acid_length (1 : acid list) =
helper (fun Ch:acid) (acc:int) -> 1 + acc) 0 1

What about the types?

let rec helper (combine : bool -> bool -> bool)
(base : bool) (1 : bool list) : bool =
begin match 1 with

| [] -> base
| h :: t -> combine h Chelper combine base t)
end

let exists (1 : bool list) =
helper (fun Ch:bool) (acc:bool) -> h || acc) false 1

let rec helper (combine : acid -> int -> int)
(base : int) (1 : acid list) : int =
begin match 1 with

| [] -> base
| h :: t -> combine h Chelper combine base t)
end

let acid_length (1 : acid list) =
helper (fun Ch:acid) (acc:int) -> 1 + acc) 0 1

What about the types?

let rec helper (combmer -> -> boolD
(base) list) : bool =
begin match 1 with
| [] -> base
| h :: t -> combine h Chelper combine base t)

end

let exists (1 :
helper (fun Ch:

list) =
) Cacc:bool) -> h || acc) false 1

let rec helper (combme- -> -> int)
(base

list) : [int
begin match 1 with
| [1 -> base
| h :: t -> combine h Chelper combine base t)
end

let acid_length (1 :
helper (fun Ch:

list) =
) Cacc:fink) -> 1 + acc) 0 1

Making the Helper Generic

let rec helper (combine : @ -> l -> "B

(base : 'B) (1 : list) : ' The helpers now
begin match 1 with have the same type.
| [] -> base
| h :: t -> combine h Chelper combine base/t)
end

let exists (1 :
helper (fun Ch:

list) =

) (acc:-)\—> h

| acc) false 1

let rec helper (combine : @ -> l -> But they are

_ (base : B (1 : list) : 'b = instantiated
lloe%n ma;ch L with differently for
-> base
| h :: t -> combine h Chelper combine bas the two uses.
end

let acid_length (1 : list) =
helper (fun Ch:) (acc: -> 1 +acc) 01

List Fold

let rec fold (combine: 'a -> 'b -> 'b)
(base:'b) (1 : "a 1list) : 'b

begin match 1 with “‘\~\\\Juﬂrenmne

| I:] -> base " "] "
| x :: t -> combine x (fold combine base t) aeEperitonnolch:

end

let exists (1 : bool list) : bool =
fold (fun Ch:bool) (acc:bool) -> h || acc) false 1

let acid_length (1 : acid list) : int =
fold (fun Ch:acid) (acc:int) -> 1 + acc) 0 1

fold (a.k.a. “reduce”)

— Like transform, foundational function for programming with lists
— Captures the pattern of recursion over lists

— Part of OCaml standard library (L1st.fold_right)

— Similar operations for other recursive datatypes (fold_tree)

Using List Fold

let rec fold (combine: 'a -> 'b -> 'b)
(base:'b) (1 : "a list) : 'b =
begin match 1 with

| [] -> base
| x :: t -> combine x (fold combine base t)
end

let exists (1 : bool list) : bool =

fold 6Fun (h:bool) (acc:bool) -> h || acc? false 1
L—Y—J \ J

: . base case:
combine function: o the list
) computes the result given answer when the lis
recursion h the head of the list and Is empty

acc the “accumulated”
answer given by recursion

fold:
general-purpose

“m

9: Rewrite using fold

0

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

How would you rewrite this function

let rec sum (1 : int list) : int =
begin match 1 with

[1 >0

| h ::

end

t -> h + sum t

using fold? What should be the arguments for base and

combine?

1. combine is:

base is:

2. combineiis:

base is:

3. combineiis:

base is:

sum can’t be written with fold. Answer: 2

(fun (Ch:1nt) (acc:int) -> acc + 1)
0

(fun (h:1nt) (acc:int) -> h + acc)
0

(fun (Ch:1nt) (acc:int) -> h + acc)
1

“m

9: Rewrite using fold

0

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

How would you rewrite this function

let rec reverse (1 : int 1list) : int list =
begin match 1 with
I [> [
| h :: t -> reverse t @ [h]
end

using fold? What should be the arguments for base and combine?

1. combine is: (fun Ch:1nt) (acc:int list) -> h :: acc)
base is: 0

2. combine is: (fun (h:int) (acc:int list) -> acc @ [h])
base is: 0

3. combine is: (fun (h:int) (acc:int list) -> acc @ [h])
base is: []

4. reverse can’t be written by with fold. Answer: 3

Functions as Values

We’ve seen many ways in which functions can be treated as
values in OCaml

Everyday programming practice (in many languages, not just
OCaml!) offers many more examples

— objects bundle “functions” (a.k.a. methods) with data

— iterators (“cursors” for walking over data structures)

— event listeners (in GUIs)

— etc.

Also heavily used for large-scale computing: Google’s
MapReduce
— Framework for transforming (mapping) sets of key-value pairs
— Then “reducing” the results per key of the map
— Easily distributed to 10,000 machines to execute in parallel!

Chapter 10

You are probably familiar with the idea of a
set from mathematics.

In math, we typically write sets like this:
@ {1,2,3,4} {true, false}{X)y,z}

operations:
SUT forunion and
SN T forintersection;

we write x €S for the predicate
“x is a member of the set §”

A set is an abstraction

e Asetis a collection of data

— we have operations for forming sets of elements
— we can ask whether elements are in a set

 Asetis alot like a list, except:

— Order doesn't matter
— Duplicates don't matter

— Itisn't built into OCaml

An element’s presence or absence in the
set is all that matters...

* Sets show up frequently in applications

— Examples: set of students in a class, set of coordinates in a
graph, set of answers to a survey, set of data samples from
an experiment, ...

Abstract type: set

A BST can implement (represent) a

set
— there is a way to represent an empty set
(Empty)
— there is a way to list all elements contained in
the set (inorder)

— there is a way to test membership (lookup)

— Can define union/intersection (with insert T T bstract view
and delete)

 BSTs are not the only way to @ @
implement sets @

Three Representations of Sets

Alternate representation:
unsorted linked list.

3::0::1::[]

concrete representation concrete represe ntation

abstract view abstract view

® ®
© ©
® ®

Alternate representation:
reverse sorted array with
Index of next slot.

|

3. 1]0 X |X

concrete representation

abstract view

®
©
®

Abstract types (e.g. set)

An abstract type is defined by its interface
and its properties, not its representation.

Interface: defines operations on the type

There is an empty set

There is a way to add elements to a set to make a bigger
set

There is a way to list all elements in a set
There is a way to test membership

Properties: define how the operations
interact with each other

Elements that were added can be found in the set

Adding an element a second time doesn’t change the
elements of a set

Adding in a different order doesn’t change the elements
of a set

Any type (possibly with invariants) that
satisfies the interface and properties can be
a set.

concrete representation

abstract view

®
©
®

Set Signature

The name of the signature. The s1g keyword indicates
\ P

N / an interface declaration
module type SET = sig

v Type declaration has no
type 'a sete- “right-hand side” —its

representation is abstract!

val empty : 'a set

val add : 'a -> '"a set -> 'a set
val member : 'a -> 'a set -> bool

val equals : 'a set -> 'a set -> bool
val set_of_list : 'a list -> 'a set

end \

>~

The interface members are the (only!)
means of manipulating the abstract type.

Signature (a.k.a. Interface): defines operations on the type

Implementing sets

There are many ways to implement sets.
— lists, trees, arrays, etc.

How do we choose which implementation?
— Depends on the needs of the application...
— How often is ‘member’ used vs. ‘add’?
— How big can the sets be?

Many such implementations are of the flavor
“a setis a ... with some invariants”
— Asetis a list with no repeated elements.
— Asetis a tree with no repeated elements
— A setis a binary search tree
— Asetis an array of bits, where 0 = absent, 1 = present

How do we preserve the invariants of the implementation?

A module implements an interface

* Animplementation of the set interface will look like this:

Name of the module

Signature that it implements

The struct keyword indicates

~— | amodule implementation
module B§4$et : Sﬁ?/;struct

(* 1mplementations of all the operations *)

ena

Implementing the set Module

module BSTSet : SET = struct

type 'a tree =
| Empty
| Node of 'a tree * "a * "a tree

Module must define (give a
concrete representation to) the
type declared in the signature

type 'a set = 'a tree__

let empty : 'a set = Empty

ena

 The implementation has to include everything promised by the interface

— It can contain more functions and type definitions (e.g. auxiliary or helper
functions) but those cannot be used outside the module

— The types of the provided implementations must match the interface

Abstract vs. Concrete BSTSet

concrete representation

abstract view

®
©
®

module BSTSet : SET = struct
type 'a tree = ..
type 'a set = 'a tree
let empty : 'a set = Empty
let add (x:'a) (s:"'a set) :'a set=
... (* can treat s as a tree *)

end
_____________ -
l-module type SET = sig i
I type 'a set
- val empty : 'a set | Ip—p——
val add : 'a -> 'a set -> 'a set I
| end

(* A client of the BSTSet module *)
;3 open BSTSet

let s : int set
= add @ (add 3 (add 1 empty))

Another Implementation

module ULSet : SET =
struct

type 'a set = 'a list <

let empty : 'a set = []

end

A different definition for
the type set

Abstract vs. Concrete ULSet

S

0::3::1::[]

concrete representation

abstract view

®
©
®

module ULSet : SET = struct
type 'a set = 'a list
let empty : 'a set = []
let add (x:'a) (s:"'a set) :'a set=
X::s (* can treat s as a list *)

end
_____________ -
l-module type SET = sig i
I type 'a set
- val empty : 'a set | Ip—p——
val add : 'a -> 'a set -> 'a set I
| end

(* A client of the ULSet module *)
;3 open ULSet

let s : int set
= add @ (add 3 (add 1 empty))

“\\‘CHentcodedoethchange!

