
Programming Languages 
and Techniques

(CIS1200)

Lecture 9

Higher-order functions: transform and fold
Lecture notes: Chapter 9



Announcements (1)
• Please complete the intro survey (link on Ed) 

available this afternoon
• Homework 3 available this afternoon
– Practice with BSTs, generic functions, first-class functions, 

and abstract types
– Due Tuesday, September 24th at 11:59pm
– Start early!

• Problems 1-4 can be done after class today
• Problems 5-8 can be done after class on Friday

• Reading: Chapters 8, 9, and 10 of the lecture notes



Announcements (2)

• Midterm 1:  Friday, September 27th
– Coverage: up to Wednesday, Sep 25th (Chapters 1-10)
– During lecture  

Last names:    A – Z    Meyerson Hall B1

– 60 minutes; closed book, closed notes
– Review Material

• old exams on the web site (“schedule” tab)
– Review Session

• Wednesday, September 25, 7:00-9:00pm, Towne 100 
(will be recorded)

• Review Videos will be posted this weekend



First-Class Functions



First-class Functions

• Functions are first-class values in OCaml: they can be 
manipulated like any other value.

• They have a type that specifies the input and output types.
• The “fun” keyword introduces an anonymous function.

– Sometimes called lambdas* or closures

let f : t -> u = fun (x:t) -> <body> 

anonymous function valuefunction type

function body

*The term “lambda” comes from Church’s lambda calculus.



2 = 1 + 1 
A function that takes two arguments…

has the same type as a function that takes one argument 
and returns a function that takes one argument

int -> int -> int 

int -> (int -> int) 

This is actually useful!



Multiple Arguments

let sum (x : int) (y:int) : int = x + y

let sum = fun (x:int) -> fun (y:int) -> x + y

let sum : int -> int -> int

create a function valuedefine a variable with 
that value 

We can decompose a standard function definition

into parts: 

The two definitions of sum have the same type and behave the same!

that returns a function value



Partial Application

sum 3
⟼ (fun (x:int) -> fun (y:int) -> x + y) 3   definition 
⟼ fun (y:int) -> 3 + y  substitute 3 for x

let sum (x : int) (y:int) : int = x + y  

the result of a “partially applied function” is 
itself a function (that can later be applied)



Functions that return functions

sum 3
⟼ (fun (x:int) -> fun (y:int) -> x + y) 3   definition 
⟼ fun (y:int) -> 3 + y  substitute 3 for x

let sum (x : int) (y:int) : int = x + y  

the result of a “partially applied function” is 
itself a function (that can later be applied)

let sum = fun (x:int) -> fun (y:int) -> x + y



List transformations

A fundamental design pattern 
using first-class functions



type entry = string * int
let phone_book = [ ("Steve", 2155559092), … ] 

let rec get_names (p : entry list) : string list = 
  begin match p with
  | ((name, num)::rest) -> name :: get_names rest
  | [] -> []
  end
  
let rec get_numbers (p : entry list) : int list = 
  begin match p with 
  | ((name, num)::rest) -> num :: get_numbers rest
  | [] -> []
  end 

Phone book example

Can we use first-class functions
to refactor code to share common 

structure?



Refactoring

let rec helper (f:entry -> 'b) (p:entry list) : 'b list = 
  begin match p with 
  | (entry::rest) -> f entry :: helper f rest
  | [] -> []
  end 

let get_names (p : entry list) : string list = 
  helper fst p
let get_numbers (p : entry list) : int list = 
  helper snd p

fst and snd are functions that
 access the parts of a tuple:
let fst (x,y) = x
let snd (x,y) = y

The argument f determines
what happens with the entry at the 

head of the list



Going even more generic

Now let's make it work for all lists,
not just lists of entries…

let rec helper (f:entry -> 'b) (p:entry list) : 'b list = 
  begin match p with 
  | (entry::rest) -> f entry :: helper f rest
  | [] -> []
  end 

let get_names (p : entry list) : string list = 
  helper fst p
let get_numbers (p : entry list) : int list = 
  helper snd p



Going even more generic

'a stands for (string*int)
'b stands for int snd : (string*int) -> int

let rec helper (f:'a -> 'b) (p:'a list) : ’b list = 
  begin match p with 
  | (entry::rest) -> f entry :: helper f rest
  | [] -> []
  end 

let get_names (p : entry list) : string list = 
  helper fst p
let get_numbers (p : entry list) : int list = 
  helper snd p



Transforming Lists

let rec transform (f: 'a->'b) (l:'a list) : 'b list =
  begin match l with
  | []   -> []
  | h::t -> (f h)::(transform f t) 
  end

List transformation 
    a.k.a. “mapping* a function across a list”
• foundational function for programming with lists
• part of OCaml standard library  (called List.map)
•  used over and over again 
   (e.g., Google’s famous map-reduce infrastructure)

*many languages (including OCaml) use the terminology “map” for the function that transforms a list by 
applying a function to each element.  Don’t confuse List.map with “finite map”.





What is the value of this expresssion?

1. [0; -1; 1; -2]

2. [1]

3. [1; 1; 0; 1]

4. [false; false; true; false]

5. runtime error

transform (fun (x:int) -> x > 0)
   [0 ; -1; 1; -2] 

ANSWER: 4



The ‘fold’ design pattern

a general-purpose recursive function



Is there a pattern in the definition of these two functions?

let rec acid_length (l : acid list) : int = 
   begin match l with 
   | [] -> 0
   | h :: t -> 1 + acid_length t
   end 

let rec exists (l : bool list) : bool = 
   begin match l with 
   | [] -> false
   | h :: t -> h || exists t
   end  

Refactoring code, again



Is there a pattern in the definition of these two functions?

Can we factor out this pattern using first-class functions?

let rec acid_length (l : acid list) : int = 
   begin match l with 
   | [] -> 0
   | h :: t -> 1 + acid_length t
   end 

let rec exists (l : bool list) : bool = 
   begin match l with 
   | [] -> false
   | h :: t -> h || exists t
   end  

Refactoring code, again

combine step:
Do something with 
the head of the list 
and the result of the 
recursive call

base case: 
Simple answer when 
the list is empty



let rec acid_length (l : acid list) : int = 
   begin match l with 
   | [] -> 0
   | h :: t -> 1 + acid_length t
   end  
  

let rec exists (l : bool list) : bool = 
   begin match l with 
   | [] -> false 
   | h :: t -> h || exists t
   end  

Preparation



let rec helper (l : acid list) : int = 
   begin match l with 
   | [] -> 0
   | h :: t -> 1 + helper t
   end  
  
let acid_length (l : acid list) = helper l 

let rec helper (l : bool list) : bool = 
   begin match l with 
   | [] -> false 
   | h :: t -> h || helper t
   end  

let exists (l : bool list) = helper l

Preparation: introduce a helper

First: introduce a helper 
function that will 
(eventually) become the 
same for both definitions.



let rec helper (l : acid list) : int = 
   begin match l with 
   | [] -> 0
   | h :: t -> 1 + helper t
   end  
  
let acid_length (l : acid list) = helper l 

let rec helper (l : bool list) : bool = 
   begin match l with 
   | [] -> false 
   | h :: t -> h || helper t
   end  

let exists (l : bool list) = helper l

Abstracting with respect to Base



Abstracting with respect to Base

let rec helper (base : int) (l : acid list) : int = 
   begin match l with 
   | [] -> base
   | h :: t -> 1 + helper base t
   end  
  
let acid_length (l : acid list) = helper 0 l 

let rec helper (base : bool) (l : bool list) : bool = 
   begin match l with 
   | [] -> base
   | h :: t -> h || helper base t
   end  

let exists (l : bool list) = helper false l



let rec helper (base : int) (l : acid list) : int = 
   begin match l with 
   | [] -> base
   | h :: t -> 1 + helper base t
   end  
  
let acid_length (l : acid list) = helper 0 l 

let rec helper (base : bool) (l : bool list) : bool = 
   begin match l with 
   | [] -> base
   | h :: t -> h || helper base t
   end  

let exists (l : bool list) = helper false l

Abstracting with respect to Combine



let rec helper (base : int) (l : acid list) : int = 
   begin match l with 
   | [] -> base
   | h :: t -> 1 + helper base t
   end  
  
let acid_length (l : acid list) = helper 0 l 

let rec helper (base : bool) (l : bool list) : bool = 
   begin match l with 
   | [] -> base
   | h :: t -> h || helper base t
   end  

let exists (l : bool list) = helper false l

Abstracting with respect to Combine



Abstracting with respect to Combine

let rec helper (combine : acid -> int -> int) 
               (base : int) (l : acid list) : int = 
   begin match l with 
   | [] -> base
   | h :: t -> combine h (helper combine base t)
   end  
  
let acid_length (l : acid list) = 
  helper (fun (h:acid) (acc:int) -> 1 + acc) 0 l 

let rec helper (combine : bool -> bool -> bool)
    (base : bool) (l : bool list) : bool = 
   begin match l with 
   | [] -> base
   | h :: t -> combine h (helper combine base t)
   end  

let exists (l : bool list) = 
  helper (fun (h:bool) (acc:bool) -> h || acc) false l



What about the types?

let rec helper (combine : acid -> int -> int) 
               (base : int) (l : acid list) : int = 
   begin match l with 
   | [] -> base
   | h :: t -> combine h (helper combine base t)
   end  
  
let acid_length (l : acid list) = 
  helper (fun (h:acid) (acc:int) -> 1 + acc) 0 l 

let rec helper (combine : bool -> bool -> bool)
    (base : bool) (l : bool list) : bool = 
   begin match l with 
   | [] -> base
   | h :: t -> combine h (helper combine base t)
   end  

let exists (l : bool list) = 
  helper (fun (h:bool) (acc:bool) -> h || acc) false l



What about the types?

let rec helper (combine : acid -> int -> int) 
               (base : int) (l : acid list) : int = 
   begin match l with 
   | [] -> base
   | h :: t -> combine h (helper combine base t)
   end  
  
let acid_length (l : acid list) = 
  helper (fun (h:acid) (acc:int) -> 1 + acc) 0 l 

let rec helper (combine : bool -> bool -> bool)
    (base : bool) (l : bool list) : bool = 
   begin match l with 
   | [] -> base
   | h :: t -> combine h (helper combine base t)
   end  

let exists (l : bool list) = 
  helper (fun (h:bool) (acc:bool) -> h || acc) false l



let rec helper (combine : 'a -> 'b -> 'b) 
               (base : 'b) (l : 'a list) : 'b = 
   begin match l with 
   | [] -> base
   | h :: t -> combine h (helper combine base t)
   end  
  
let acid_length (l : acid list) = 
  helper (fun (h:acid) (acc:int) -> 1 + acc) 0 l 

let rec helper (combine : 'a -> 'b -> 'b)
               (base : 'b) (l : 'a list) : 'b = 
   begin match l with 
   | [] -> base
   | h :: t -> combine h (helper combine base t)
   end  

let exists (l : bool list) = 
  helper (fun (h:bool) (acc:bool) -> h || acc) false l

Making the Helper Generic

But they are 
instantiated 
differently for 
the two uses.

The helpers now 
have the same type.



List Fold

fold (a.k.a. “reduce”)
– Like transform,  foundational function for programming with lists
– Captures the pattern of recursion over lists
– Part of OCaml standard library (List.fold_right)
– Similar operations for other recursive datatypes  (fold_tree)

let rec fold (combine: 'a -> 'b -> 'b) 
     (base:'b) (l : 'a list) : 'b = 
   begin match l with 
   | [] -> base
   | x :: t -> combine x (fold combine base t)
   end

let exists (l : bool list) : bool =  
fold (fun (h:bool) (acc:bool) -> h || acc) false l 

let acid_length (l : acid list) : int = 
fold (fun (h:acid) (acc:int) -> 1 + acc) 0 l 

Just rename 
"helper" to "fold".



Using List Fold
let rec fold (combine: 'a -> 'b -> 'b) 
             (base:'b) (l : 'a list) : 'b = 
   begin match l with 
   | [] -> base
   | x :: t -> combine x (fold combine base t)
   end

let exists (l : bool list) : bool =  
    fold (fun (h:bool) (acc:bool) -> h || acc) false l 

combine function:
computes the result given 
h the head of the list and 
acc the “accumulated” 
answer given by recursion

base case: 
answer when the list 
is empty

fold: 
general-purpose
recursion





How would you rewrite this function

using fold? What should be the arguments for base and 
combine?

1. combine is:  (fun (h:int) (acc:int) -> acc + 1)    
base is:    0

2. combine is:  (fun (h:int) (acc:int) -> h + acc)    
base is:    0

3. combine is:  (fun (h:int) (acc:int) -> h + acc) 
base is:    1

4. sum can’t be written with fold.

let rec sum (l : int list) : int = 
   begin match l with 
   | [] -> 0
   | h :: t -> h + sum t
   end

Answer: 2





How would you rewrite this function

using fold? What should be the arguments for base and combine?

1. combine is:  (fun (h:int) (acc:int list) -> h :: acc) 
base is:    0

2. combine is:  (fun (h:int) (acc:int list) -> acc @ [h]) 
base is:    0

3. combine is:  (fun (h:int) (acc:int list) -> acc @ [h]) 
base is:    []

4. reverse can’t be written by with fold.

let rec reverse (l : int list) : int list = 
   begin match l with 
   | [] -> []
   | h :: t -> reverse t @ [h]
   end

Answer: 3



Functions as Values
• We’ve seen many ways in which functions can be treated as 

values in OCaml 
• Everyday programming practice (in many languages, not just 

OCaml!) offers many more examples
– objects bundle “functions” (a.k.a. methods) with data
– iterators (“cursors” for walking over data structures)
– event listeners (in GUIs)
– etc.

• Also heavily used for large-scale computing: Google’s 
MapReduce
– Framework for transforming (mapping) sets of key-value pairs
– Then “reducing” the results per key of the map
– Easily distributed to 10,000 machines to execute in parallel!



Abstract Collections

Chapter 10



You are probably familiar with the idea of a 
set from mathematics.

In math, we typically write sets like this:
           Ø   {1,2,3,4}   {true,false} {X,Y,Z}

operations:    
                      S ⋃ T   for union and
                      S ⋂ T   for intersection;

we write   x ∈ S   for the predicate 
                     “x is a member of the set S”



A set is an abstraction
• A set is a collection of data
– we have operations for forming sets of elements
– we can ask whether elements are in a set

• A set is a lot like a list, except:
– Order doesn't matter
– Duplicates don't matter
– It isn't built into OCaml

• Sets show up frequently in applications
– Examples: set of students in a class, set of coordinates in a 

graph, set of answers to a survey, set of data samples from 
an experiment,  …

An element’s presence or absence in the
set is all that matters…



Abstract type: set
• A BST can implement (represent) a 

set
– there is a way to represent an empty set 

(Empty)
– there is a way to list all elements contained in 

the set (inorder)
– there is a way to test membership (lookup)
– Can define union/intersection (with insert 

and delete)

• BSTs are not the only way to 
implement sets

1

0 3

< >

concrete representation

1

3

0

abstract  view



Three Representations of Sets

1

3

0

abstract  view
concrete representation

3 1 0 X X

Alternate representation:
reverse sorted array with 
Index of next slot.  

1

3

0

abstract  view

1

3

0

abstract  view
concrete representation

Alternate representation:
unsorted linked list.

3::0::1::[]

1

0 3

< >

concrete representation

BST:



Abstract types  (e.g. set)
• An abstract type is defined by its interface 

and its properties, not its representation.
• Interface: defines operations on the type

– There is an empty set
– There is a way to add elements to a set to make a bigger 

set
– There is a way to list all elements in a set
– There is a way to test membership

• Properties: define how the operations 
interact with each other
– Elements that were added can be found in the set
– Adding an element a second time doesn’t change the 

elements of a set
– Adding in a different order doesn’t change the elements 

of a set

• Any type (possibly with invariants) that 
satisfies the interface and properties can be 
a set.

1

3

0

abstract  view

?
concrete representation



Sets in OCaml



module type SET = sig

 type 'a set

 val empty       : 'a set
 val add         : 'a -> 'a set -> 'a set
 val member      : 'a -> 'a set -> bool
 val equals      : 'a set -> 'a set -> bool
   val set_of_list : 'a list -> 'a set

end

Set Signature

Type declaration has no 
“right-hand side” – its 
representation  is abstract!

The sig keyword indicates
an interface declaration

The interface members are the (only!) 
means of manipulating the abstract type.

The name of the signature.

Signature (a.k.a. Interface): defines operations on the type



Implementing sets
• There are many ways to implement sets.

– lists, trees, arrays, etc.

• How do we choose which implementation?
– Depends on the needs of the application…
– How often is ‘member’ used vs. ‘add’?
– How big can the sets be?

• Many such implementations are of the flavor 
“a set is a … with some invariants”
– A set is a list with no repeated elements.
– A set is a tree with no repeated elements
– A set is a binary search tree
– A set is an array of bits, where 0 = absent, 1 = present

• How do we preserve the invariants of the implementation?



A module implements an interface
• An implementation of the set interface will look like this:

module BSTSet : SET = struct
  …  
(* implementations of all the operations *) 

  …  
end

Name of the module

Signature that it implements

The struct keyword indicates 
a module implementation



Implementing the set Module

module BSTSet : SET = struct

  type 'a tree =          
   | Empty   
   | Node of 'a tree * 'a * 'a tree

  type 'a set = 'a tree

  let empty : 'a set = Empty
  …
end

• The implementation has to include everything promised by the interface
– It can contain more functions and type definitions (e.g. auxiliary or helper 

functions) but those cannot be used outside the module
– The types of the provided implementations must match the interface

Module must define (give a 
concrete representation to) the 
type declared in the signature



Abstract vs. Concrete BSTSet
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abstract  view

1
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< >

concrete representation

s  =
module BSTSet : SET = struct
  type 'a tree = …
  type 'a set = 'a tree
  let empty : 'a set = Empty

let add (x:'a) (s:'a set) :'a set= 
     ... (* can treat s as a tree *)
end

(* A client of the BSTSet module *)
;; open BSTSet

let s : int set
  = add 0 (add 3 (add 1 empty))

module type SET = sig
  type 'a set
  val empty : 'a set
  val add   : 'a -> 'a set -> 'a set
end



Another Implementation

module ULSet : SET = 
struct
  
  type 'a set = 'a list 

  let empty : 'a set = []
  …

end

A different definition for 
the type set



Abstract vs. Concrete ULSet

1

3

0

abstract  view
concrete representation

s  =   0::3::1::[]

module ULSet : SET = struct
  type 'a set = 'a list
  let empty : 'a set = []

let add (x:'a) (s:'a set) :'a set= 
     x::s (* can treat s as a list *)
end

(* A client of the ULSet module *)
;; open ULSet

let s : int set
  = add 0 (add 3 (add 1 empty))

module type SET = sig
  type 'a set
  val empty : 'a set
  val add   : 'a -> 'a set -> 'a set
end

Client code doesn’t change!


