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Announcements (1)

• Homework 3 available, due Tuesday at 11.59pm
– Practice with BSTs, generic functions, first-class functions, 

and abstract types
– Start early!

• Problems 1-4 can be done already
• Problems 5-8 can be done after class today

• Reading: Chapters 8, 9, and 10 of the lecture notes

• Please complete the Intro Survey (details on Ed)



Announcements (2)
• Midterm 1:  Friday, September 27th
– Coverage: up to Wednesday, Sep 25th (Chapters 1-10)
– During lecture  

Last names:    A – Z    Meyerson Hall B1

– 60 minutes; closed book, closed notes

– Review Material
• old exams on the web site (“schedule” tab)

– Review Session
• Wednesday, September 25, 7:00-9:00pm, Towne 100 

(will be recorded)
• Review Videos will be posted this weekend



Sets as Abstract Types



Mathematical Sets

In math, we typically write sets like this:

           Ø   {1,2,3,4}   {true,false} {X,Y,Z}

with operations    
                      S ⋃ T   for union and
                      S ⋂ T   for intersection;

and write   x ∈ S   for the predicate 
                     “x is a member of the set S”



Set properties
Certain facts hold of set operations:
1. If x ∈ S then x ∈ (S ⋃ T)   for any other set T.
2. If x ∈ T then x ∈ (S ⋃ T)   for any other set S.
3. x ∉ Ø                   (the empty set contains no elements)
4. x ∈ {x}                 (the element x is in its singleton set)

5. S ⋃ T = T ⋃ S            (union is commutative)
6. (S ⋃ T) ⋃ V = S ⋃ (T ⋃ V)    (union is associative)
7. S ⋃ S = S                                 (union is idempotent)
8. S ⋃ Ø = S                                 (Ø is the “right unit” of union)
…



A Set is an Abstract Type
• An abstract type is defined by its interface 

and its properties, not its representation
• Interface: defines the type and operations

– There is a type of sets
– There is an empty set
– There is a way to add elements to make a bigger set
– There is a way to list all elements in a set
– There is a way to test membership

• Properties: define how the operations 
interact with each other
– Elements that were added can be found in the set
– Adding an element a second time doesn’t change the 

listing of elements
– Adding elements in a different order doesn’t change the 

listing of elements 

• When we use a set, we can forget about 
the representation!
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abstract  view
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concrete representation

That is abstraction!!



Sets in OCaml

OCaml directly supports the declaration of 
abstract types via signatures



module type SET = sig

 type 'a set

 val empty       : 'a set
 val add         : 'a -> 'a set -> 'a set
 val member      : 'a -> 'a set -> bool
 val equals      : 'a set -> 'a set -> bool
   val set_of_list : 'a list -> 'a set

end

Set Signature

Type declaration has no 
“right-hand side” – its 
representation is abstract!

The sig keyword indicates
an interface declaration

The interface members are the (only!) 
means of manipulating the set type.

The name of the signature

Signature (a.k.a. interface): defines operations on the type



Math notation vs. Code

Ø    ~
{x}         ~
{x} ⋃ S  ~
x ∈ S   ~

empty     : 'a set
add x empty : 'a set
add x s   : 'a set
member x s : bool
equals 
  (add x (add y empty))
  (add y (add x empty))
           : bool

{x} ⋃ {y} = {y} ⋃ {x}    ~ 

Examples of corresponding
notions in math vs. OCaml.



Implementing sets
• There are many ways to implement sets

– lists, trees, arrays, etc.
– each of these could be a suitable representation type

• How do we choose which implementation?
– Depends on the needs of the application…
– How often is ‘member’ used vs. ‘add’?
– How big can the sets be?

• How do we preserve the invariants of the implementation?
• Many implementations are of the flavor 

“a set is a … with some invariants”
– A set is a list with no repeated elements.
– A set is a tree with no repeated elements
– A set is a binary search tree

Invariant:  a property that 
remains unchanged when 
a specified transformation is 
applied.



A module implements an interface
• An implementation of the set interface will look like this:

module BSTSet : SET = struct
  …  
  (* implementations of type and operations *) 
  …  
end

Name of the module

Signature that it implements

The struct keyword indicates 
a module implementation



Implement the BSTSet Module

module BSTSet : SET = struct

  type 'a tree =          
   | Empty   
   | Node of 'a tree * 'a * 'a tree

  type 'a set = 'a tree

  let empty : 'a set = Empty
  
  …  (* implementations of add, member, etc. *) 
end

• The implementation must include everything promised by the interface
– It can contain more functions and type definitions (e.g., auxiliary or helper 

functions) but those cannot be used outside the module
– The types of the provided implementations must match the signature

Module must define (give a 
concrete representation to) the 
type declared in the signature



Abstract vs. Concrete BSTSet
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concrete representation

s  =
module BSTSet : SET = struct
  type 'a tree = …
  type 'a set = 'a tree
  let empty : 'a set = Empty
  let add (x:'a) (s:'a set) :'a set = 
     ... (* can treat s as a tree *)

end

(* A client of the BSTSet module *)
(* Cannot treat a set as a tree  *)
;; open BSTSet

let s : int set
  = add 0 (add 3 (add 1 empty))

module type SET = sig
  type 'a set
  val empty : 'a set
  val add   : 'a -> 'a set -> 'a set
end



A different Implementation

module ULSet : SET = 
struct
  
  type 'a set = 'a list 

  let empty : 'a set = []
  …

end

A different definition for 
the type set



Abstract vs. Concrete ULSet
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abstract  view
concrete representation

s  =   0::3::1::[]

module ULSet : SET = struct
  type 'a set = 'a list
  let empty : 'a set = []

let add (x:'a) (s:'a set) :'a set = 
     x::s (* can treat s as a list *)

end

(* A client of the ULSet module *)
(* Cannot treat a set as a list *)
;; open ULSet

let s : int set
  = add 0 (add 3 (add 1 empty))

module type SET = sig
  type 'a set
  val empty : 'a set
  val add   : 'a -> 'a set -> 'a set
end

Client code doesn’t change!



Implementing ULSet

See sets.ml



Testing (and using) sets
• Use “open” to bring all names defined in the interface into 

scope
• Any names that were already in scope are shadowed

;; open ULSet  

let s1 = add 3 empty 
let s2 = add 4 empty
let s3 = add 4 s1 

let test () : bool = (member 3 s1)
;; run_test "ULSet.member 3 s1" test

let test () : bool = (member 4 s3)
;; run_test "ULSet.member 4 s3" test



Testing (and using) sets
• Alternatively,  use the “dot” syntax:

                   ULSet.<member>
• Note: Module names must be capitalized in OCaml
• Useful when two modules define the same operations

let s1 = ULSet.add 3 ULSet.empty 
let s2 = ULSet.add 4 ULSet.empty
let s3 = ULSet.add 4 s1 

let test () : bool = (ULSet.member 3 s1)
;; run_test "ULSet.member 3 s1" test

let test () : bool = (ULSet.member 4 s3)
;; run_test "ULSet.member 4 s3" test





Does this code type check?

 

1. yes
2. no

module type SET = sig
  type 'a set
  val empty : 'a set
  val add   : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
  type 'a tree = 
    | Empty   
    | Node of 'a tree * 'a * 'a tree
  type 'a set = 'a tree
  let empty : 'a set = Empty
  …
end

;; open BSTSet
let s1 : int set = add 1 empty

Answer: yes





Does this code type check?

 

1. yes
2. no

;; open BSTSet
let s1 = add 1 empty
let i1 = begin match s1 with 
         | Node (_,k,_) -> k
         | Empty -> failwith “impossible”
         end

Answer: no,  add constructs a set, not a tree

module type SET = sig
  type 'a set
  val empty : 'a set
  val add   : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
  type 'a tree = 
    | Empty   
    | Node of 'a tree * 'a * 'a tree
  type 'a set = 'a tree
  let empty : 'a set = Empty
  …
end





Does this code type check?

 

1. yes
2. no

;; open BSTSet
let s1 = add 1 empty
let i1 = size s1

Answer: no,  cannot access helper functions outside the module

module type SET = sig
  type 'a set
  val empty : 'a set
  val add   : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
  type 'a tree = 
    | Empty   
    | Node of 'a tree * 'a * 'a tree
  type 'a set = 'a tree
  let empty : 'a set = Empty
  let size (t : 'a tree) : int = …
  …
end





Does this code type check?

 

1. yes
2. no

module type SET = sig
  type 'a set
  val empty : 'a set
  val add   : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
  type 'a tree = 
    | Empty   
    | Node of 'a tree * 'a * 'a tree
  type 'a set = 'a tree
  let empty : 'a set = Empty
  …
end

;; open BSTSet
let s1 : int set = Empty

Answer: no, the Empty data 
constructor is not 
available outside the module



If a client module works correctly and starts with:

will it continue to work if we change that line to:

assuming that ULSet and BSTSet both implement SET 
and satisfy all of the set properties?

1. yes
2. no

;; open ULSet

;; open BSTSet

Answer: yes (though performance may be different)



Is it possible for a client to call member with a tree that is 
not a BST?

1. yes
2. no

module type SET = sig
  type 'a set
  val empty : 'a set
  val add    : 'a -> 'a set -> 'a set
  val member : 'a -> 'a set -> bool
end

module BSTSet : SET = struct
  type 'a tree = 
    | Empty   
    | Node of 'a tree * 'a * 'a tree
  type 'a set = 'a tree
  let empty : 'a set = Empty
  …
end

No: the BSTSet operations preserve the BST invariants.
there is no way to construct a non-BST tree using the 
interface.



Completing ULSet

See sets.ml



Equality of Sets
• Note that the interface for our abstract sets includes:

– This function defines what it means for two sets to be “equal”.

• Why can’t we just use OCaml’s built-in  `=` to compare?
– This generic, built-in equality operation = compares the structure of

its two inputs to see whether they are the same.
– BUT(!) two values with different structure may represent the same 

collection of elements.

• In ULSet:

val equals : 'a set -> 'a set -> bool
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abstract  view
concrete representation

3::0::1::[]
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3
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abstract  view

concrete representation
0::1::3::[]

These two values 
are equal as sets.

These two values 
are not equal as 
lists.



When defining an abstract type, you may need to define a 
different notion of equality

– The built-in “structural equality” written as = may not be appropriate
– Be sure to use the ‘equals’ function when comparing, e.g., sets
– (Other generic operations, like < and > may also be affected.)



What Should You Test?
• Interface: defines operations on the type
• Properties: define how the operations interact 

– Elements that were added can be found in the set
– Adding an element a second time doesn’t change the elements of a set
– Adding in a different order doesn’t change the elements of a set

Test the properties!
A property is a general statement about the behavior of the 
interface:   For any set s and any element x:

member x (add x s) = true
A (good) test case checks a specific instance of the property: 
  let s1 = add 3 empty 
  let test () : bool = (member 3 s1)
  ;; run_test "ULSet.member 3 s1" test



Property-based Testing
1. Translate informal requirements into general statements about the 

interface.

2. Write tests for the “interesting” instances of the general 
statement.

Notes: 
   - one can’t (usually) exhaustively test all possibilities (too many!)
 so instead, cover the “interesting” possibilities
   - be careful with equality! ULSet.equals is not the same as =.

Example:  “Order doesn’t matter” becomes
              For any set s and any elements x and y,

add x (add y s) equals add y (add x s)

Example. “interesting” choices:
    s = empty,      s = nonempty,   
   x = y,    x <> y
    one or both of  x, y already in s


