
Programming Languages
and Techniques

(CIS1200)

Lecture 11

Abstract types: Finite Maps
Chapter 10

Announcements (1)

• Homework 3 is due tomorrow at 11.59pm
– Practice with BSTs, generic functions, first-class functions,

and abstract types

• Reading: Chapters 8, 9, and 10 of the lecture notes

Announcements (2)
• Midterm 1: Friday, September 27th
– Coverage: up to Wednesday, Sep 25th (Chapters 1-10)
– During lecture

Last names: A – Z Meyerson Hall B1

– 60 minutes; closed book, closed notes

– Review Material
• old exams on the web site (“schedule” tab)

– Review Session
• Wednesday, September 25, 7:00-9:00pm, Towne 100

(will be recorded)
• Review Videos available on canvas

Review: Abstract types (e.g., set)
• An abstract type is defined by its interface and its

properties, not its representation.

• Interface: defines operations on the type
– There is an empty set
– There is a way to add elements to a set to make a bigger set
– There is a way to list all elements in a set
– There is a way to test membership

• Properties: define how the operations interact with
each other
– Elements that were added can be found in the set
– Adding an element a second time doesn’t change the elements of a

set
– Adding in a different order doesn’t change the elements of a set

• Any type (possibly with invariants) that satisfies the
interface and properties can be a set

• Clients of an implementation can only access what is
explicitly mentioned in the abstract type’s interface

1

3

0

abstract view

?
concrete representation

Interface

Review: Abstract vs. Concrete ULSet

1

3

0

abstract view
concrete representation

s = 0::3::1::[]

module ULSet : SET = struct
 type 'a set = 'a list
 let empty : 'a set = []

let add (x:'a) (s:'a set) :'a set =
 (* can treat s as a list *)
 x :: s
end

(* A client of the module *)
;; open ULSet

let s : int set
 = add 0 (add 3 (add 1 empty))

module type SET = sig
 type 'a set
 val empty : 'a set
 val add : 'a -> 'a set -> 'a set
end

Client code doesn’t (can’t!) care
about internal representation!

Review: Abstract vs. Concrete OLSet

1

3

0

abstract view
concrete representation

s = 0::1::3::[]

module OLSet : SET = struct
 type 'a set = 'a list
 let empty : 'a set = []

let add (x:'a) (s:'a set) :'a set =
 (* can treat s as a list, but
 must find right place for x *)
 …
end

(* A client of the OLSet module *)
;; open OLSet

let s : int set
 = add 0 (add 3 (add 1 empty))

module type SET = sig
 type 'a set
 val empty : 'a set
 val add : 'a -> 'a set -> 'a set
end

Client code doesn’t change!

Does this code type check?

1. yes
2. no

;; open BSTSet
let s1 = add 1 empty
let i1 = size s1

Answer: no, cannot access helper functions outside the module

module type SET = sig
 type 'a set
 val empty : 'a set
 val add : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
 type 'a tree =
 | Empty
 | Node of 'a tree * 'a * 'a tree
 type 'a set = 'a tree
 let empty : 'a set = Empty
 let size (t : 'a tree) : int = …
 …
end

Does this code type check?

1. yes
2. no

module type SET = sig
 type 'a set
 val empty : 'a set
 val add : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
 type 'a tree =
 | Empty
 | Node of 'a tree * 'a * 'a tree
 type 'a set = 'a tree
 let empty : 'a set = Empty
 …
end

;; open BSTSet
let s1 : int set = Empty

Answer: no, the Empty data
constructor is not
available outside the module

If a client module works correctly and starts with:

will it continue to work if we change that line to:

assuming that ULSet and BSTSet both implement SET
and satisfy all of the set properties?

1. yes
2. no

;; open ULSet

;; open BSTSet

Answer: yes (though performance may be different)

Is it possible for a client to call member with a tree that is
not a BST?

1. yes
2. no

module type SET = sig
 type 'a set
 val empty : 'a set
 val add : 'a -> 'a set -> 'a set
 val member : 'a -> 'a set -> bool
end

module BSTSet : SET = struct
 type 'a tree =
 | Empty
 | Node of 'a tree * 'a * 'a tree
 type 'a set = 'a tree
 let empty : 'a set = Empty
 …
end

No: the BSTSet operations preserve the BST invariants.
there is no way to construct a non-BST tree using the
interface.

Equality of Sets

When defining an abstract type, you may need to define a
different notion of equality

– The built-in “structural equality” (written =) may not be appropriate
– Be sure to use the ‘equals’ function when comparing, e.g., sets
– (Other generic operations, like < and > may also be affected.)

Equality of Sets
• The SET interface includes

• Can we use OCaml’s built-in `=` to compare sets?
– This generic, built-in equality operation = compares the structure of

its two inputs to see whether they are the same

• With unordered lists, NO!

val equals : 'a set -> 'a set -> bool

1

3

abstract view
concrete representation

3::1::1::[]

1

3

abstract view
concrete representation

1::3::[]

These two values
are equal as sets

These two values
are not = as lists

This function should return
true when both sets
contain same elements

add 1 (add 3 empty)add 3 (add 1 (add 1 empty))

Equality of Sets
• The SET interface includes

• Can we use OCaml’s built-in `=` to compare sets?
– This generic, built-in equality operation = compares the structure of

its two inputs to see whether they are the same

• With strictly ordered lists, YES!

val equals : 'a set -> 'a set -> bool

1

3

abstract view
concrete representation

1::3::[]

1

3

abstract view
concrete representation

1::3::[]

These two values
are equal as sets

These two values
are = as lists

This function should return
true when both sets
contain same elements

add 1 (add 3 empty)add 3 (add 1 (add 1 empty))

Abstract types: BIG IDEA

• Example representation invariants
– Sets implemented as lists, which must be strictly ordered (no

duplicates)
– Sets implemented as binary tree, satisfying the BST invariant

• If the set type is abstract, and all operations preserve
invariants, then invariants must hold for all sets in the
program!
– Example: if all sets implemented as lists are strictly ordered, then

the `=` operation implements set equality
– Example: if all sets implemented as trees satisfy the BST invariant,

then the lookup function can assume that its input is a BST

Hide the concrete representation of a type behind an
abstract interface to preserve representation invariants

Abstract types: BIG IDEA

• An abstract interface restricts how other parts of the
program can interact with the data
– Type checking ensures that the only way to create a set is with the

operations in the interface (empty, add, etc.)
– Type checking ensures that clients cannot depend on whether the

sets are implemented as trees or lists

• Benefits
– Safety: The other parts of the program can’t violate invariants,

which would cause bugs
– Modularity: It is possible to change the implementation without

changing the rest of the program

Hide the concrete representation of a type behind an
abstract interface to preserve representation invariants

Encapsulation and Modularity

SET 'a set

empty

add

int set
values

1

3
0

2

1

3

0

2

Some big program that needs to use a set

Implementation

SET 'a set
int set

values

1

3
0

2

1

3

0

2

Some big program that needs to use a set

empty

add
2::0::3::1::[]

0::3::1::[]

ULSet []

gets

returns

Implementation

SET 'a set
int set

values

1

3
0

2

1

3

0

2

Some big program that needs to use a set

empty

add
0::1::2::3::[]

0::1::3::[]

OLSet []

Abstraction Boundary – "preserves the invariants"
• inputs to the SET module satisfy the

representation invariants
• as long as the created outputs do

gets

returns

Property-Based Testing

Testing Styles
• “From the inside”…

– If we know the concrete representation of our data, we can test the
effect of each operation on that representation

– Useful for checking that invariants are maintained

• “From the outside”…
– If the concrete representation is hidden, this doesn’t work!
– We need a different way to think about testing

What Should We Test?
• Interface: Names and types of operations on the abstract type
• Properties: How the operations behave and interact

– “Elements that were added can be found by lookup”
– “Adding an element a second time doesn’t change the elements of a set
– “Adding elements in a different order doesn’t change the outcome of later operations”

Test the properties!
A property is a general statement about the behavior of
functions in the interface. E.g.,
 For any set s and any element x,

member x (add x s) = true

A good test case checks a specific instance of the property:
 let test () : bool = (member 3 (add 3 empty))
 ;; run_test "member 3 (add 3 empty)" test

Property-based Testing
1. Translate informal requirements into general statements about the

interface.

2. Write tests for the “interesting” instances of the general statement.

Notes:
 - Not usually possible to exhaustively test all possibilities (too many!):
 so just try to cover the “interesting” choices
 - Be careful with equality! ULSet.equals is not the same as =.

Example: “Order doesn’t matter” becomes
 For any set s and any elements x and y,

 add x (add y s) "equals" add y (add x s)

Example “interesting” choices:
• s is empty vs. s is nonempty
• x = y vs. x <> y
• x and/or y already in s

vs. x and y different from what’s in s

Finite Maps

A case study on abstract interfaces
and concrete implementations

Motivating Scenario
• Suppose you were writing a course-management

system and needed to look up the lab section for a
student given the student’s PennKey…
– Students might add/drop the course
– Students might switch lab sections
– Students should be in only one lab section

• How would you do it? What data structure would
you use?

Key/Value store

• Each key is associated with a value.
– No two keys are identical
– Values can be repeated

• Given the key “stephanie”, we want to find / lookup the value
15

Key Value
“stephanie” 15

“mitch” 05
“ezaan” 10
“likat” 15

… …

Finite Maps
• A finite map (a.k.a. dictionary) is a collection of entries from distinct

keys to values.
– Operations to add a new entry, test for key membership, get the

value bound to a particular key, list all entries stored in the map

• Example: we might use a finite map to look up the lab section of a
CIS 1200 student

• Like sets, finite maps appear in many settings:
– domain names to IP addresses
– words to their definitions (a dictionary)
– user names to passwords
– …

Design Process Step 1:
Understand the problem

Signature: Finite Map

module type MAP = sig

 type ('k,'v) map

 val empty : ('k,'v) map
 val add : 'k -> 'v -> ('k,'v) map -> ('k,'v) map
 val mem : 'k -> ('k,'v) map -> bool
 val get : 'k -> ('k,'v) map -> 'v
 val equals : ('k,'v) map -> ('k,'v) map -> bool

end

The map type is generic in two ways:
type of keys and type of values

Design Process Step 2:
specify the interface

Properties of Finite Maps
For any finite map m, key k, and value v:
1. get k (add k v m) = v
2. If k1 <> k2 then

get k1 (add k2 v2 (add k1 v1 m)) = v1
3. If mem k m = true then

 there is a v such that get k m = v
4. If mem k m = false then

 get k m = v fails
5. mem k (add k v m) = true

(among others…)

Design Process Step 3:
write test cases

Tests for Finite Map abstract type
;; open Assert

(* Specifying the properties of the MAP abstract type via test cases. *)

(* A simple map with one element. *)
let m1 : (int,string) map = add 1 "uno" empty

(* access value for key in the map *)
;; run_test "find 1 m1" (fun () -> (get 1 m1) = "uno")

(* find for value that does not exist in the map? *)
;; run_failing_test "find 2 m1" (fun () -> (get 2 m1) = "dos")

let m2 : (int, string) map = add 1 "un" m1

(* find after redefining value, should be new value *)
;; run_test "find 1 m2" (fun () -> (get 1 m2) = "un")

(* test membership *)
;; run_test "mem test" (fun () ->
 mem 1 (add 2 "dos" (add 1 "uno" empty)))

Design Process Step 3:
write test cases

Using an anonymous
function avoids making up a
(redundant) function name
for the test

Finite Map Demo

Implementing the module

finiteMap.ml

Implementation: Ordered Lists
module Assoc : MAP = struct
 (* Represent a finite map as a list of pairs. *)
 (* Representation invariant: *)
 (* - no duplicate keys (helps get, remove) *)
 (* - keys are sorted (helps equals, get) *)

type ('k,'v) map = ('k * 'v) list

 let empty : ('k,'v) map = []

 let rec mem (key:'k) (m : ('k,'v) map) : bool =
 begin match m with
 | [] -> false
 | (k,v)::rest ->
 (key >= k) &&
 ((key = k) || (mem key rest))
 end

;; run_test "mem test" (fun () -> mem "b" [("a",3); ("b",4)])

Design Process Step 4:
implement it!

Implementation: Ordered Lists
let rec get (key:'k) (m : ('k,'v) map) : 'v =

 begin match m with
 | [] -> failwith "key not found"
 | (k,v)::rest ->
 if key < k then failwith "key not found"
 else if key = k then v
 else get key rest
 end

 let rec remove (key:'k) (m : ('k,'v) map) : ('k,'v) map =
 begin match m with
 | [] -> []
 | (k,v)::rest ->
 if key < k then m
 else if key = k then rest
 else (k,v)::remove key rest
 end

Summary: Abstract Types
• Different programming languages support different ways of

defining abstract types

• At a minimum, this means providing:
– A way to specify (write down) an interface
– A means of hiding implementation details (encapsulation)

• In OCaml:
– Interfaces are specified using a signature or interface
– Encapsulation: the interface can omit information

• type definitions
• names of auxiliary functions

– Clients cannot mention values or types not named in the interface

Typechecking

How does OCaml* typecheck your code?

*Historical aside: the algorithm we are about to see is known as the Damas-Hindley-Milner
type inference algorithm. Turing Award winner Robin Milner was, among other things,
the inventor of "ML" (for "meta language"), from which OCaml gets its "ml".

OCaml Typechecking Errors

43

Typechecking
How do we determine the type of an expression?

1. Recursively determine the types of all sub-expressions
– Constants have “obvious” types

 3 : int “foo” : string true : bool
– Identifiers may have type annotations

• let and function arguments
• Module signatures/interfaces

2. Expressions that construct structured values have compound
types built from the types of sub-expressions
 (3, “foo”) : int * string
 (fun (x:int) -> x + 1) : int -> int
 Node(Empty, (3, “foo”), Empty) : (int * string) tree

Typechecking Functions
To typecheck a function:

CIS120

fun (x:int) -> x + x

??

Typechecking Functions
To typecheck a function:

CIS120

fun (x:int) -> x + x

Targ -> Tans

Make up "new names" for
the input (argument) and
output (answer) types.

Typechecking Functions
To typecheck a function:

CIS120

fun (x:int) -> x + x

Targ -> Tans

Take the argument type
from the type annotation
(if any*): Targ = int

*If there is no annotation, just use the "fresh" name…

Typechecking Functions
To typecheck a function:

CIS120

fun (x:int) -> x + 2

int -> Tans

Recursive typecheck the
body of the function in
a "typing context" where
the argument has
the input type:
 (x : int)int

Typechecking Functions
To typecheck a function:

CIS120

fun (x:int) -> x + 2

int -> Tans

Literals like 2 have
unique types:
 (2 : int)

int int

Typechecking Functions
To typecheck a function:

CIS120

fun (x:int) -> x + 2

int -> Tans

int int

int

Built-in operations like (+) also have
types:
 (+) : int -> int -> int

Function application
has the result type,
assuming the input
types are correct.

Typechecking Functions
To typecheck a function:

CIS120

fun (x:int) -> x + 2

int -> Tans

int int

int

The "answer" type is the
type of the body.
 Tans = int

Typechecking Functions
To typecheck a function:

CIS120

fun (x:int) -> x + 2

int -> int

int int

int

Typechecking II
3. The type of a function-application expression is obtained as

the result from the function type:
– Given a function f : Targ -> Tans
– and an argument e : Targ of the input type
– the application (f e) : Tans has the answer type

((fun (x:int) (y:bool) -> y) 3) : ??

Typechecking II

((fun (x:int) (y:bool) -> y) 3) : ??

??

3. The type of a function-application expression is obtained as
the result from the function type:
– Given a function f : Targ -> Tans
– and an argument e : Targ of the input type
– the application (f e) : Tans has the answer type

Typechecking II

((fun (x:int) (y:bool) -> y) 3) : ??

int -> bool -> ??

??

3. The type of a function-application expression is obtained as
the result from the function type:
– Given a function f : Targ -> Tans
– and an argument e : Targ of the input type
– the application (f e) : Tans has the answer type

Typechecking II

((fun (x:int) (y:bool) -> y) 3) : ??

int -> bool -> ??

bool

??

3. The type of a function-application expression is obtained as
the result from the function type:
– Given a function f : Targ -> Tans
– and an argument e : Targ of the input type
– the application (f e) : Tans has the answer type

Typechecking II

((fun (x:int) (y:bool) -> y) 3) : ??

int -> bool -> bool

bool

??

3. The type of a function-application expression is obtained as
the result from the function type:
– Given a function f : Targ -> Tans
– and an argument e : Targ of the input type
– the application (f e) : Tans has the answer type

Typechecking II

((fun (x:int) (y:bool) -> y) 3) : ??

int -> bool -> bool int

??

bool

3. The type of a function-application expression is obtained as
the result from the function type:
– Given a function f : Targ -> Tans
– and an argument e : Targ of the input type
– the application (f e) : Tans has the answer type

Typechecking II

((fun (x:int) (y:bool) -> y) 3) : ??

int -> bool -> bool int

bool

bool -> bool

Here:
 T1 = int
 T2 = bool -> bool

3. The type of a function-application expression is obtained as
the result from the function type:
– Given a function f : Targ -> Tans
– and an argument e : Targ of the input type
– the application (f e) : Tans has the answer type

Typechecking III
• What about generics? i.e., what if f:'a ->'a?

• For generic types we unify
– Given a function f : T1 -> T2
– and an argument e : U1 of the input type

Can “match up” T1 and U1 to obtain information about type
parameters in T1 and U1 based on their usage

• Unification:
– try to match up corresponding parts of the type

 (int list) tree ⇔ 'a tree

– Obtain an instantiation: e.g. 'a = int list
– Propagate that information to all occurrences of ‘a
– If not possible, unification fails, meaning a type checking error

 bool tree ⇔ int tree

ERROR! bool ≠ int

Example Typechecking Problem
empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

fun (x:'v) -> entries (add 3 x empty)

??

Example Typechecking Problem
empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

‘v -> ??

int 'v ('k, 'v) map

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v ('k, 'v) map

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v ('k, 'v) map

??

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v ('k, 'v) mapApplication:
T1 = 'k
T2 = 'v -> ('k,'v) map -> ('k,'v) map

Instantiate: 'k = int

T2

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v (int, 'v) mapAnother Application:
T’1 = 'v
T’2 = (int,'v) map -> (int,'v) map

Instantiate: 'v = 'v

T2

T’2

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v (int, 'v) mapA third Application:
T’’1 = (int,'v) map
T’’2 = (int,'v) map

Argument and argument
type already agree

T2

T’2

T’’2= (int, 'v) map

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v (int, 'v) map

T2

T’2

T’’2= (int,’v) map
U1 -> U2

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v (int, 'v) map

T2

T’2

T’’2= (int,’v) map
U1 -> U2

Another Application:
U1 = ('k,'v) map
U2 = ('k * 'v) list

Unify U1 with T’’2
 ('k,'v) map ~~ (int,'v) map

Instantiate 'k = int
??

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

‘v -> ??

int 'v (int, 'v) map

T2

T’2

T’’2= (int, 'v) map
U1 -> U2

Another Application:
U1 = (int,'v) map
U2 = (int * 'v) list

U2= (int * 'v) list

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Example Typechecking Problem

fun (x:’v) -> entries (add 3 x empty)

'v -> (int * 'v) list

int 'v (int, 'v) map

T2

T’2

T’’2= (int, 'v) map
U1 -> U2

Another Application:
U1 = (int,'v) map
U2 = (int * 'v) list

U2= (int * 'v) list

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

Ill-typed Expressions?
• An expression is ill-typed if, during this type checking process,

inconsistent constraints are encountered:

 add 3 true (add “foo” false empty)

Error: found int but expected string

empty : ('k, 'v) map
add : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

What is the type of this expression?

1. int list -> int list

2. int list -> int list -> int list

3. int list -> (int -> int) list

4. None (it doesn’t typecheck)

let e : ______ =
 transform (fun x y -> x + y)

Answer: 3

