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Announcements (1)

• Homework 3 is due tomorrow at 11.59pm
– Practice with BSTs, generic functions, first-class functions, 

and abstract types

• Reading: Chapters 8, 9, and 10 of the lecture notes



Announcements (2)
• Midterm 1:  Friday, September 27th
– Coverage: up to Wednesday, Sep 25th (Chapters 1-10)
– During lecture  

Last names:    A – Z    Meyerson Hall B1

– 60 minutes; closed book, closed notes

– Review Material
• old exams on the web site (“schedule” tab)

– Review Session
• Wednesday, September 25, 7:00-9:00pm, Towne 100 

(will be recorded)
• Review Videos available on canvas



Review: Abstract types  (e.g., set)
• An abstract type is defined by its interface and its 

properties, not its representation.

• Interface: defines operations on the type
– There is an empty set
– There is a way to add elements to a set to make a bigger set
– There is a way to list all elements in a set
– There is a way to test membership

• Properties: define how the operations interact with 
each other
– Elements that were added can be found in the set
– Adding an element a second time doesn’t change the elements of a 

set
– Adding in a different order doesn’t change the elements of a set

• Any type (possibly with invariants) that satisfies the 
interface and properties can be a set

• Clients of an implementation can only access what is 
explicitly mentioned in the abstract type’s interface
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abstract  view

?
concrete representation

Interface



Review: Abstract vs. Concrete ULSet
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abstract  view
concrete representation

s  =   0::3::1::[]

module ULSet : SET = struct
  type 'a set = 'a list
  let empty : 'a set = []

let add (x:'a) (s:'a set) :'a set =
    (* can treat s as a list *) 
    x :: s
end

(* A client of the module *)
;; open ULSet

let s : int set
  = add 0 (add 3 (add 1 empty))

module type SET = sig
  type 'a set
  val empty : 'a set
  val add   : 'a -> 'a set -> 'a set
end

Client code doesn’t (can’t!) care 
about internal representation!



Review: Abstract vs. Concrete OLSet
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abstract  view
concrete representation

s  =   0::1::3::[]

module OLSet : SET = struct
  type 'a set = 'a list
  let empty : 'a set = []

let add (x:'a) (s:'a set) :'a set = 
    (* can treat s as a list, but 
       must find right place for x *) 
   …
end

(* A client of the OLSet module *)
;; open OLSet

let s : int set
  = add 0 (add 3 (add 1 empty))

module type SET = sig
  type 'a set
  val empty : 'a set
  val add   : 'a -> 'a set -> 'a set
end

Client code doesn’t change!





Does this code type check?

 

1. yes
2. no

;; open BSTSet
let s1 = add 1 empty
let i1 = size s1

Answer: no,  cannot access helper functions outside the module

module type SET = sig
  type 'a set
  val empty : 'a set
  val add   : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
  type 'a tree = 
    | Empty   
    | Node of 'a tree * 'a * 'a tree
  type 'a set = 'a tree
  let empty : 'a set = Empty
  let size (t : 'a tree) : int = …
  …
end





Does this code type check?

 

1. yes
2. no

module type SET = sig
  type 'a set
  val empty : 'a set
  val add   : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
  type 'a tree = 
    | Empty   
    | Node of 'a tree * 'a * 'a tree
  type 'a set = 'a tree
  let empty : 'a set = Empty
  …
end

;; open BSTSet
let s1 : int set = Empty

Answer: no, the Empty data 
constructor is not 
available outside the module



If a client module works correctly and starts with:

will it continue to work if we change that line to:

assuming that ULSet and BSTSet both implement SET 
and satisfy all of the set properties?

1. yes
2. no

;; open ULSet

;; open BSTSet

Answer: yes (though performance may be different)



Is it possible for a client to call member with a tree that is 
not a BST?

1. yes
2. no

module type SET = sig
  type 'a set
  val empty : 'a set
  val add    : 'a -> 'a set -> 'a set
  val member : 'a -> 'a set -> bool
end

module BSTSet : SET = struct
  type 'a tree = 
    | Empty   
    | Node of 'a tree * 'a * 'a tree
  type 'a set = 'a tree
  let empty : 'a set = Empty
  …
end

No: the BSTSet operations preserve the BST invariants.
there is no way to construct a non-BST tree using the 
interface.



Equality of Sets



When defining an abstract type, you may need to define a 
different notion of equality

– The built-in “structural equality” (written =) may not be appropriate
– Be sure to use the ‘equals’ function when comparing, e.g., sets
– (Other generic operations, like < and > may also be affected.)



Equality of Sets
• The SET interface includes

• Can we use OCaml’s built-in  `=` to compare sets?
– This generic, built-in equality operation = compares the structure of

its two inputs to see whether they are the same

• With unordered lists, NO!

val equals : 'a set -> 'a set -> bool
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3

abstract  view
concrete representation

3::1::1::[]

1

3

abstract  view
concrete representation

1::3::[]

These two values 
are equal as sets

These two values 
are not = as lists

This function should return 
true when both sets 
contain same elements

add 1 (add 3 empty)add 3 (add 1 (add 1 empty))



Equality of Sets
• The SET interface includes

• Can we use OCaml’s built-in  `=` to compare sets?
– This generic, built-in equality operation = compares the structure of

its two inputs to see whether they are the same

• With strictly ordered lists, YES!

val equals : 'a set -> 'a set -> bool

1

3

abstract  view
concrete representation

1::3::[]

1

3

abstract  view
concrete representation

1::3::[]

These two values 
are equal as sets

These two values 
are = as lists

This function should return 
true when both sets 
contain same elements

add 1 (add 3 empty)add 3 (add 1 (add 1 empty))



Abstract types: BIG IDEA

• Example representation invariants
– Sets implemented as lists, which must be strictly ordered (no 

duplicates)
– Sets implemented as binary tree, satisfying the BST invariant 

• If the set type is abstract, and all operations preserve 
invariants, then invariants must hold for all sets in the 
program!
– Example: if all sets implemented as lists are strictly ordered, then 

the `=` operation implements set equality
– Example: if all sets implemented as trees satisfy the BST invariant, 

then the lookup function can assume that its input is a BST

Hide the concrete representation of a type behind an 
abstract interface to preserve representation invariants 



Abstract types: BIG IDEA

• An abstract interface restricts how other parts of the 
program can interact with the data
– Type checking ensures that the only way to create a set is with the 

operations in the interface (empty, add, etc.)
– Type checking ensures that clients cannot depend on whether the 

sets are implemented as trees or lists

• Benefits
– Safety:   The other parts of the program can’t violate invariants, 

which would cause bugs
– Modularity:  It is possible to change the implementation without 

changing the rest of the program

Hide the concrete representation of a type behind an 
abstract interface to preserve representation invariants 



Encapsulation and Modularity

SET   'a set

empty

add

int set 
values

1

3
0

2
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Some big program that needs to use a set



Implementation

SET   'a set
int set 

values

1

3
0

2

1

3

0

2

Some big program that needs to use a set

empty

add
2::0::3::1::[]

0::3::1::[]

ULSet []

gets

returns



Implementation

SET   'a set
int set 

values

1

3
0

2

1

3

0

2

Some big program that needs to use a set

empty

add
0::1::2::3::[]

0::1::3::[]

OLSet []

Abstraction Boundary – "preserves the invariants"
• inputs to the SET module satisfy the 

representation invariants
• as long as the created outputs do

gets

returns



Property-Based Testing



Testing Styles
• “From the inside”…

– If we know the concrete representation of our data, we can test the 
effect of each operation on that representation

– Useful for checking that invariants are maintained

• “From the outside”…
– If the concrete representation is hidden, this doesn’t work!
– We need a different way to think about testing



What Should We Test?
• Interface: Names and types of operations on the abstract type
• Properties: How the operations behave and interact 

– “Elements that were added can be found by lookup”
– “Adding an element a second time doesn’t change the elements of a set
– “Adding elements in a different order doesn’t change the outcome of later operations”

Test the properties!
A property is a general statement about the behavior of 
functions in the interface.  E.g., 
                             For any set s and any element x,

member x (add x s) = true

A good test case checks a specific instance of the property: 
  let test () : bool = (member 3 (add 3 empty))
  ;; run_test "member 3 (add 3 empty)" test



Property-based Testing
1. Translate informal requirements into general statements about the 

interface.

2. Write tests for the “interesting” instances of the general statement.

Notes: 
   - Not usually possible to exhaustively test all possibilities (too many!):
  so just try to cover the “interesting” choices
   - Be careful with equality! ULSet.equals is not the same as =.

Example:  “Order doesn’t matter” becomes
            For any set s and any elements x and y,

  add x (add y s) "equals" add y (add x s)

Example “interesting” choices:
• s is empty   vs.   s is nonempty
• x = y    vs.   x <> y
• x and/or y already in s          

vs. x and y different from what’s in s 





Finite Maps

A case study on abstract interfaces 
and concrete implementations



Motivating Scenario
• Suppose you were writing a course-management 

system and needed to look up the lab section for a 
student given the student’s PennKey…
– Students might add/drop the course
– Students might switch lab sections
– Students should be in only one lab section

• How would you do it? What data structure would 
you use?



Key/Value store

• Each key is associated with a value.
– No two keys are identical
– Values can be repeated

• Given the key “stephanie”, we want to find / lookup the value 
15

Key Value
“stephanie” 15

“mitch” 05
“ezaan” 10
“likat” 15

… …



Finite Maps
• A finite map (a.k.a. dictionary) is a collection of entries from distinct 

keys to values.
– Operations to add a new entry, test for key membership, get the 

value bound to a particular key, list all entries stored in the map

• Example: we might use a finite map to look up the lab section of a 
CIS 1200 student

• Like sets,  finite maps appear in many settings:
– domain names to IP addresses
– words   to their definitions (a dictionary)
– user names  to passwords
– …

Design Process Step 1:
Understand the problem



Signature: Finite Map

module type MAP = sig
  
  type ('k,'v) map
              
  val empty   : ('k,'v) map
  val add     : 'k -> 'v -> ('k,'v) map -> ('k,'v) map  
  val mem     : 'k -> ('k,'v) map -> bool
  val get     : 'k -> ('k,'v) map -> 'v    
  val equals  : ('k,'v) map -> ('k,'v) map -> bool    

end

The map type is generic in two ways: 
type of keys and type of values

Design Process Step 2:
specify the interface



Properties of Finite Maps
For any finite map m, key k, and value v:
1.  get k (add k v m) = v
2. If k1 <> k2 then

get k1 (add k2 v2 (add k1 v1 m)) = v1
3. If   mem k m = true   then 

     there is a v such that      get k m = v
4. If  mem k m = false then 

     get k m = v     fails
5.  mem k (add k v m) = true 

(among others…)

Design Process Step 3:
write test cases



Tests for Finite Map abstract type
;; open Assert

(* Specifying the properties of the MAP abstract type via test cases. *)

(* A simple map with one element. *)
let m1 : (int,string) map = add 1 "uno" empty

(* access value for key in the map *)
;; run_test "find 1 m1" (fun () -> (get 1 m1) = "uno") 

(* find for value that does not exist in the map? *)
;; run_failing_test "find 2 m1" (fun () -> (get 2 m1) = "dos" )   

let m2 : (int, string) map = add 1 "un" m1

(* find after redefining value, should be new value *)
;; run_test "find 1 m2" (fun () -> (get 1 m2) = "un")

(* test membership *)
;; run_test "mem test" (fun () -> 
  mem 1 (add 2 "dos" (add 1 "uno" empty)))

Design Process Step 3:
write test cases

Using an  anonymous 
function avoids making up a 
(redundant) function name 
for the test



Finite Map Demo

Implementing the module

finiteMap.ml



Implementation: Ordered Lists
module Assoc : MAP = struct
  (* Represent a finite map as a list of pairs.      *)
  (* Representation invariant:                       *)
  (*   - no duplicate keys (helps get, remove)       *) 
  (*   - keys are sorted (helps equals, get)         *) 
 

type ('k,'v) map = ('k * 'v) list
  
  let empty : ('k,'v) map = []
      
  let rec mem (key:'k) (m : ('k,'v) map) : bool =
    begin match m with
 | [] -> false
 | (k,v)::rest ->
   (key >= k) &&
      ((key = k) || (mem key rest))
    end

;; run_test "mem test" (fun () -> mem "b" [("a",3); ("b",4)])
      
  

Design Process Step 4:
implement it!



Implementation: Ordered Lists
let rec get (key:'k) (m : ('k,'v) map) : 'v =

    begin match m with
    | [] -> failwith "key not found"
    | (k,v)::rest ->
      if key < k then failwith "key not found"
      else if key = k then v
      else get key rest
    end
      
  let rec remove (key:'k) (m : ('k,'v) map) : ('k,'v) map =
    begin match m with
    | [] -> []
    | (k,v)::rest ->
      if key < k then m
      else if key = k then rest
      else (k,v)::remove key rest
    end
      
  



Summary: Abstract Types
• Different programming languages support different ways of 

defining abstract types

• At a minimum, this means providing:
– A way to specify (write down) an interface
– A means of hiding implementation details (encapsulation)

• In OCaml:
– Interfaces are specified using a signature or interface
– Encapsulation: the interface can omit information

• type definitions
• names of auxiliary functions

– Clients cannot mention values or types not named in the interface



Typechecking

How does OCaml* typecheck your code?

*Historical aside:  the algorithm we are about to see is known as the Damas-Hindley-Milner
type inference algorithm.  Turing Award winner Robin Milner was, among other things,
the inventor of "ML" (for "meta language"), from which OCaml  gets its "ml".



OCaml Typechecking Errors

43



Typechecking
How do we determine the type of an expression?

1. Recursively determine the types of all sub-expressions
– Constants have “obvious” types

        3 : int     “foo” : string      true : bool
– Identifiers may have type annotations

• let and function arguments
• Module signatures/interfaces

2. Expressions that construct structured values have compound 
types built from the types of sub-expressions
    (3, “foo”)                     : int * string
  (fun (x:int) -> x + 1)         : int -> int
  Node(Empty, (3, “foo”), Empty) : (int * string) tree



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + x

??



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + x

Targ -> Tans

Make up "new names" for
the input (argument) and 
output (answer) types.



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + x

Targ -> Tans

Take the argument type
from the type annotation
(if any*):     Targ = int 

*If there is no annotation, just use the "fresh" name…



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + 2

int -> Tans

Recursive typecheck the 
body of the function in 
a "typing context" where
the argument has 
the input type:
  (x : int)int



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + 2

int -> Tans

Literals like 2 have
unique types:
  (2 : int)

int int



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + 2

int -> Tans

int int

int

Built-in operations like (+) also have
types:
  (+) : int -> int -> int

Function application
has the result type,
assuming the input
types are correct. 



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + 2

int -> Tans

int int

int

The "answer" type is the
type of the body.
    Tans = int 



Typechecking Functions
To typecheck a function:  

CIS120

fun (x:int) -> x + 2

int -> int

int int

int



Typechecking II
3. The type of a function-application expression is obtained as 

the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type

((fun (x:int) (y:bool) -> y)  3)  : ??



Typechecking II

((fun (x:int) (y:bool) -> y)  3)  : ??

??

3. The type of a function-application expression is obtained as 
the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type



Typechecking II

((fun (x:int) (y:bool) -> y)  3)  : ??

int -> bool -> ??

??

3. The type of a function-application expression is obtained as 
the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type



Typechecking II

((fun (x:int) (y:bool) -> y)  3)  : ??

int -> bool -> ??

bool

??

3. The type of a function-application expression is obtained as 
the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type



Typechecking II

((fun (x:int) (y:bool) -> y)  3)  : ??

int -> bool -> bool

bool

??

3. The type of a function-application expression is obtained as 
the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type



Typechecking II

((fun (x:int) (y:bool) -> y)  3)  : ??

int -> bool -> bool int

??

bool

3. The type of a function-application expression is obtained as 
the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type



Typechecking II

((fun (x:int) (y:bool) -> y)  3)  : ??

int -> bool -> bool int

bool

bool -> bool

Here:
  T1 = int
  T2 = bool -> bool

3. The type of a function-application expression is obtained as 
the result from the function type:
– Given a function         f   : Targ -> Tans
– and an argument       e    : Targ                of the input type
– the application          (f e) : Tans               has the answer type



Typechecking III
• What about generics? i.e., what if  f:'a ->'a?

• For generic types we unify
– Given a function         f  : T1 -> T2
– and an argument       e  : U1                   of the input type

Can “match up” T1 and U1 to obtain information about type 
parameters in T1 and U1 based on their usage

• Unification:
– try to match up corresponding parts of the type

               (int list) tree       ⇔         'a tree

– Obtain an instantiation: e.g.   'a = int list
– Propagate that information to all occurrences of  ‘a
– If not possible, unification fails, meaning a type checking error

    bool tree       ⇔        int tree

ERROR! bool  ≠  int



Example Typechecking Problem
empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

fun (x:'v) -> entries (add 3 x empty)

??



Example Typechecking Problem
empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list

fun (x:'v) -> entries (add 3 x empty)

'v -> ??



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

‘v -> ??

int 'v ('k, 'v) map

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v ('k, 'v) map

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v ('k, 'v) map

??

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v ('k, 'v) mapApplication:
T1 = 'k
T2 = 'v -> ('k,'v) map -> ('k,'v) map 

Instantiate:   'k = int

T2

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v (int, 'v) mapAnother Application:  
T’1 = 'v
T’2 = (int,'v) map -> (int,'v) map 

Instantiate:   'v = 'v

T2

T’2

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v (int, 'v) mapA third Application:  
T’’1 = (int,'v) map
T’’2 = (int,'v) map 

Argument and argument
type already agree

T2

T’2

T’’2= (int, 'v) map

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v (int, 'v) map

T2

T’2

T’’2= (int,’v) map
U1 -> U2

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

'v -> ??

int 'v (int, 'v) map

T2

T’2

T’’2= (int,’v) map
U1 -> U2

Another Application:  
U1 = ('k,'v) map 
U2 = ('k * 'v) list 

Unify U1 with T’’2
   ('k,'v) map    ~~    (int,'v) map

Instantiate 'k = int
??

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:'v) -> entries (add 3 x empty)

‘v -> ??

int 'v (int, 'v) map

T2

T’2

T’’2= (int, 'v) map
U1 -> U2

Another Application:  
U1 = (int,'v) map 
U2 = (int * 'v) list 

U2= (int * 'v) list

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Example Typechecking Problem

fun (x:’v) -> entries (add 3 x empty)

'v -> (int * 'v) list

int 'v (int, 'v) map

T2

T’2

T’’2= (int, 'v) map
U1 -> U2

Another Application:  
U1 = (int,'v) map 
U2 = (int * 'v) list 

U2= (int * 'v) list

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list



Ill-typed Expressions?
• An expression is ill-typed if, during this type checking process, 

inconsistent constraints are encountered:

   add 3 true (add “foo” false empty)

Error: found int but expected string

empty   : ('k, 'v) map
add     : 'k -> 'v -> ('k, 'v) map -> ('k, 'v) map
entries : ('k, 'v) map -> ('k * 'v) list





What is the type of this expression?

1. int list -> int list

2. int list -> int list -> int list

3. int list -> (int -> int) list

4.  None (it doesn’t typecheck)

let e : ______  = 
  transform (fun x y -> x + y)

Answer: 3


