
Programming Languages
and Techniques

(CIS1200)

Lecture 13

Partiality and Options
Records

Unit, Sequencing, and Commands
Mutable State and Aliasing

Chapters 11, 12, 13

Announcements (1)
• Midterm 1

– Grades and solutions will be posted in a few days

• HW04 released tomorrow
– Due in 2 weeks (October 15)

• Fall Break this week
– No class on Friday
– Recitations are cancelled for this week
– No Office Hours from Thu-Sun

• No office hours for Benjamin next Monday (Oct 7)

Plan for Today
• Two more useful features
–partiality via "options"
– records with named components

• Then, a paradigm shift:
– mutable state

Dealing with Partiality*

*A function is said to be partial if it is not defined for all inputs.

Which of these is a function that calculates the
maximum value in a (generic) list:

1.

2.

3.

4. None of the above

let rec list_max (l:'a list) : ’a =
 begin match l with
 | [] -> []
 | h :: t -> max h (list_max t)
 end

let rec list_max (l:'a list) : ’a =
 fold max 0 l

let rec list_max (l:’a list) : ‘a =
 begin match l with
 | h :: t -> max h (list_max t)
 end

Answer: 4

Oops!
Not clear what to do when list_max is called with an empty list!

let rec list_max (l:'a list) : ’a =
 begin match l with
 | [] -> failwith “empty list”
 | [h] -> h
 | h::t -> max h (list_max t)
 end

Client of list_max

• Oops! string_of_max will fail if given []

• Not so easy to debug if string_of_max is written by one
person and list_max is written by another.

• Interface of list_max is not very informative
 val list_max : int list -> int

(* string_of_max calls list_max *)
let string_of_max (x:int list) : string =
 string_of_int (list_max x)

Solutions to Partiality: Option 1
• Abort the program:

 failwith “an error message”
– Whenever it is called, failwith halts the program and

reports the error message it is given.

• This solution is appropriate when:
– You know that a certain case is impossible…
– …but the compiler isn’t smart enough to figure out that

the case is impossible
– E.g., perhaps because there is an invariant on a data

structure that the compiler doesn’t understand

• Return a default or error value
– e.g. define list_max [] to be -1
– “Error codes” used often in C programs
– null used often in Java

• But…
1. What if -1 (or whatever default you choose) really is the maximum value?

• Can lead to hideous bugs if the default isn’t handled properly by the callers.

2. Impossible to implement generically!
• No way to generically create a sensible default value for every possible type

Sir Tony Hoare, Turing Award winner and inventor of null, calls it his
“billion dollar mistake”!

Default return values should be avoided if possible!

Solutions to Partiality: Option 2

Solutions to Partiality: Option 3

Return something that cannot
be misinterpreted as a

legitimate, non-exceptional
result …

Optional values

Solutions to Partiality: Option 3

Option Types
• Define a generic datatype of optional values:

• A “partial” function returns an option

• Compared with “null” (a legal value of any type in Java):
– Caller can forget to check whether null was returned; results in

NullPointerException or crash
• Modern language designs (e.g. Apple's Swift, Mozilla's Rust)

distinguish between the types String (definitely not null) and String?
(optional string)

type 'a option =
 | None
 | Some of 'a

let list_max (l:'a list) : 'a option = …

Example: list_max

A function that returns the maximum value of a list as an option
(None if the list is empty)

let list_max (l:'a list) : 'a option =
 begin match l with
 | [] -> None
 | x::tl -> Some (fold max x tl)
 end

Revised Client of list_max

• string_of_max will never fail

• The type of list_max makes it explicit that a client must check
for partiality.

 val list_max : int list -> int option

(* string_of_max calls list_max *)
let string_of_max (l:int list) : string =
 begin match (list_max l) with
 | None -> “no maximum”
 | Some m -> string_of_int m
 end

Revising the MAP interface

module type MAP = sig

 type ('k,'v) map

 val empty : ('k,'v) map
 val add : 'k -> 'v -> ('k,'v) map -> ('k,'v) map
 val remove : 'k -> ('k,'v) map -> ('k,'v) map
 val mem : 'k -> ('k,'v) map -> bool
 val get : 'k -> ('k,'v) map -> 'v option
 val entries : ('k,'v) map -> ('k * 'v) list
 val equals : ('k,'v) map -> ('k,'v) map -> bool

end

get returns an optional 'v.
Now its type isn't a lie!

Records

Records
Records are like tuples with named fields:

• The type rgb is a record with three fields: r, g, and b
– fields can have any types; they don’t all have to be the same

• Record values are created using this notation:
 {field1=val1; field2=val2;…}

(* a type for representing colors *)
type rgb = {r:int; g:int; b:int}

(* some example rgb values *)
let red : rgb = {r=255; g=0; b=0}
let blue : rgb = {r=0; g=0; b=255}
let green : rgb = {r=0; g=255; b=0}
let black : rgb = {r=0; g=0; b=0}
let white : rgb = {r=255; g=255; b=255}

Curly braces
around record.
Semicolons between
record components.

Field Projection
• The value in a record field can be obtained by using “dot”

notation: record.field

(* a type for representing colors *)
type rgb = {r:int; g:int; b:int}

(* using 'dot' notation to project out components,
 calculate the average of two colors… *)
let average_rgb (c1:rgb) (c2:rgb) : rgb =
 {r = (c1.r + c2.r) / 2;
 g = (c1.g + c2.g) / 2;
 b = (c1.b + c2.b) / 2;}

Imperative Programming

And now for something completely different…

Imperative programming
• Most of the code we have written so far is focused on being.

– An expression is just a complicated way of describing a value
– Computation is just simplifying an expression until it can’t be

simplified any more

• But sometimes it is useful to make things happen outside the
computer
– E.g., print_string

• And sometimes it is useful to make things happen inside the
computer as well
– E.g., “mutating” a data structure in memory

Different views of imperative programming

Java (and C, C++, C#, etc.)

• Code is a sequence of
statements (a.k.a.
commands) that produce
effects

• Data structures are mutable
by default; must be
explicitly declared to be
constant

OCaml (and Haskell, etc.)

• Code is an expression that
has a value; sometimes
computing that value also
produces effects along the
way

• Data structures are
immutable by default; must
be explicitly declared to be
mutable

Commands, Sequencing, and Unit

What is the type of print_string?

Sequencing Commands and Expressions
We can sequence commands inside expressions using ‘;’

Unlike in C, Java, etc., ‘;’ doesn’t terminate a statement---it separates a
command from an expression

The distinction between commands & expressions is artificial

• print_string is a function of type string -> unit
• Commands are just expressions of type unit

let f (x:int) : int =
 print_string "f called with ";
 print_string (string_of_int x);
 x + x

note the use of ‘;’ heredo not use ‘;’ here!

Sequencing Commands and Expressions
• Expressions of type unit are useful because of their

 side effects – they "do" stuff

let f (x:int) : int =
 print_string "f called with ";
 print_string (string_of_int x);
 x + x

note the use of ‘;’ heredo not use ‘;’ here!

Something to be Careful Of
What does this function do?

let f (x:int) : int =
 if x < 0 then
 print_string "f called with negative argument ";
 print_string (string_of_int x)
 else
 print_string "f called with non-negative argument ";
 print_string (string_of_int x);
 x + x

Something to be Careful Of
Compound commands inside then and else branches of if
statements should be enclosed in begin/end or parens ()

let f (x:int) : int =
 if x < 0 then
 begin
 print_string "f called with negative argument ";
 print_string (string_of_int x)
 end
 else
 begin
 print_string "f called with non-negative argument ";
 print_string (string_of_int x)
 end;
 x + x

let f (x:int) : int =
 if x < 0 then
 (
 print_string "f called with negative argument ";
 print_string (string_of_int x)
)
 else
 (
 print_string "f called with non-negative argument ";
 print_string (string_of_int x)
);
 x + x

Something to be Careful Of
Compound commands inside then and else branches of if
statements should be enclosed in begin/end or parens ()

In OCaml, begin and end are
just syntactic sugar for (and)

unit: the trivial type
• Similar to "void" in Java or C
• Used for functions that don't take any arguments

• … and for functions that don't return anything, such as testing
and printing functions — a.k.a commands:

let f () : int = 3
let y : int = f ()

val f : unit -> int
val y : int

(* run_test : string -> (unit -> bool) -> unit *)
;; run_test “TestName” test

(* print_string : string -> unit *)
;; print_string “Hello, world!”

unit: the boring type
• Actually, () is a value just like any other value (a 0-ary tuple)
• Used for functions that don't take any interesting arguments

• …And for functions that don't return anything interesting,
such as testing and printing functions — a.k.a commands:

let f () : int = 3
let y : int = f ()

val f : unit -> int
val y : int

(* run_test : string -> (unit -> bool) -> unit *)
;; run_test “TestName” test

(* print_string : string -> unit *)
;; print_string “Hello, world!”

unit: the first-class type
• Can define values of type unit (not so useful)

let x : unit = () val x : unit

let z = begin match x with
 | () -> 4
end

fun () -> 3

• Can pattern match against unit (useful in function definitions!)

;; if z <> 4 then
 failwith "oops"
 else ()

;; if z <> 4 then
 failwith "oops"

• Unit is the result of an implicit else branch:

What is the type of f in the following program:

1. unit -> int
2. unit -> unit
3. int -> unit
4. int -> int
5. f is ill typed

let f (x:int) =
 (print_int x);
 (x + x)

Answer: 4

Mutable State

Opening a Whole New Can of Worms*

*t-shirt courtesy of ahrefs.com

Mutable Record Fields
• By default, records in OCaml are immutable: once created,

they can never be modified.
• OCaml also supports mutable fields that can be imperatively

updated by the “set” command: record.field <- val

type point = {mutable x:int; mutable y:int}

let p0 = {x=0; y=0}
(* set the x coord of p0 to 17 *)
;; p0.x <- 17
;; print_endline ("p0.x = " ^ (string_of_int p0.x))

p0.x = 17

note the ‘mutable’ keyword

in-place update of p0.x

Record Update
• Functions can assign to mutable record fields
• Note that the return type of ‘<-’ is unit

– i.e., it is a command

• Note that the result type of shift is also unit
– i.e., shift is a user-defined command

type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)
let shift (p:point) (dx:int) (dy:int) : unit =
 p.x <- p.x + dx;
 p.y <- p.y + dy

What answer does the following function produce when called?

1. 17
2. something else
3. sometimes 17 and sometimes something else
4. f is ill typed

type point = {mutable x:int; mutable y:int}

let f (p1:point) : int =
 p1.x <- 17;
 p1.x

ANSWER: 1

What answer does the following function produce when called?

1. 17
2. something else
3. sometimes 17 and sometimes something else
4. f is ill typed

type point = {mutable x:int; mutable y:int}

let f (p1:point) (p2:point) : int =
 p1.x <- 17;
 p2.x <- 42;
 p1.x

ANSWER: 3

The Challenge of Mutable State: Aliasing

let f (p1:point) (p2:point) : int =
 p1.x <- 17;
 p2.x <- 42;
 p1.x

let p0 = {x=0; y=0} in
 f p0 p0

Two identifiers are said to be aliases if they both name the same mutable
record. Inside f, the identifiers p1 and p2 might or might not be aliased,
depending on which arguments are passed in.

SEE THE COURSE NOTES FOR MORE ON THIS EXAMPLE

Consider this call to f:

Why Use Mutable State?
• Direct manipulation of hardware

– device drivers, displays, etc.

• “Action at a distance”
– allow remote parts of a program to communicate /

share information without threading the information
through all the points in between

– E.g., global settings

• Efficiency/Performance
– A few (but only a few!) data structures have

imperative implementations with better asymptotic
efficiency than the best declarative version

• Data structures with explicit sharing
– e.g. graphs
– (without mutation, it is only possible to build trees –

no cycles!)

• Re-using space (in-place update)
• Random-access data (arrays)

The Abstract State Machine

Location, Location, Location!

We need a new Computation Model
• The simple substitution model works well for

value-oriented programming
– "Observable" behavior of a value is completely determined

by its structure
– Pure functions are referentially transparent: two different

calls to the same function with the same arguments yield the
same results

– These properties justify "replace
equals by equals" reasoning

• With mutable state…
– The location of values matters, not just their structure
– Results returned by functions are not fully determined by

their arguments (can also depend on “hidden” mutable
state)

Abstract Stack Machine
Three “spaces”
• workspace

– the expression the computer is
currently simplifying

• stack
– temporary storage for local

variables and saved work
• heap

– storage area for large data
structures

HeapStackWorkspace

Abstract stack machine

Abstract Stack Machine

Initial state:
• workspace contains whole program
• stack and heap are empty

Machine operation:
• In each step, choose “next part” of

the workspace expression and
simplify it

• (Sometimes this will change the
stack and/or heap)

• Stop when there are no more
simplifications to be done

HeapStackWorkspace

Abstract stack machine

HeapStack

Nil

Values and References
A value is either:
• a primitive value like an integer, or,
• a reference to a location in the heap
A reference value is the address (location) of data in the heap.

We draw a reference value as an “arrow”
– The arrow “points” to a box or cell located at this address
– Where we are storing this value also matters:

Cons 3This box contains a
reference value

(the arrow itself) The reference points to
this heap location

containing a Cons cell

This reference value
points to the heap

location of a Nil cell

References as an Abstraction
• In a real computer, the memory consists of an array of 32-bit

words, numbered 0 … 232-1 (for a 32-bit machine)
– A reference is just an address that tells you where to look up a value
– Data structures are usually laid out in contiguous blocks of memory
– Constructor tags are just numbers chosen by the compiler

e.g. Nil = 42 and Cons = 120120120
Addresses 32-bit Values

0 ...
1 ...
2 4294967291
3 ...

... ...
4294967290 ...
4294967291 120120120
4294967292 3
4294967293 4294967295
4294967294 ...
4294967295 42

The “real”
heap.

Nil

`
Cons 3

How we
picture it.

