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Announcements (1)
• HW04 available
– Due in 2 weeks (October 15)

• Fall Break this week
– No class on Friday
– Recitations are cancelled for this week
– No Office Hours from Thu-Sun

• No office hours for Benjamin next Monday 
(Oct 7)



Review: Mutable State



Records
• By default, all record fields are immutable—once initialized, 

they can never be modified.

type point = {x:int; y:int}

let p0 = {x=0; y=0}
;; do_something_with p0
;; print_endline ("p0.x = " ^ (string_of_int p0.x))

let p1 = {x=(p0.x + 1); y=(p0.y + 1)}
;; do_something_with p1
;; print_endline ("p1.x = " ^ (string_of_int p1.x))

This will always be 0, no matter 
what "do_something_with" does

This will always be 1…



Mutable Record Fields
• By default, all record fields are immutable—once initialized, 

they can never be modified.
• OCaml also supports mutable fields that can be imperatively 

updated by the “set” command:     record.field <- val

type point = {mutable x:int; mutable y:int}

let p0 = {x=0; y=0}
(* set the x coord of p0 to 17 *)
;; p0.x <- 17
;; print_endline ("p0.x = " ^ (string_of_int p0.x))

p0.x = 17

note the ‘mutable’ keyword

in-place update of p0.x



Record Update
• Functions can assign to mutable record fields
• Note that the return type of ‘<-’ is unit

– i.e., it is a command

• the result type of shift is also unit
–  i.e., shift is a user-defined command

type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)
let shift (p:point) (dx:int) (dy:int) : unit =
  p.x <- p.x + dx;
  p.y <- p.y + dy



What answer does the following function produce when called?

   

1.  17
2. something else
3. sometimes 17 and sometimes something else
4.  f is ill typed

type point = {mutable x:int; mutable y:int}

let f (p1:point) (p2:point) : int =
  p1.x <- 17;
  p2.x <- 42;
  p1.x       

ANSWER: 3



The Challenge of Mutable State: Aliasing

let f (p1:point) (p2:point) : int =
  p1.x <- 17;
  p2.x <- 42;
  p1.x       

let p0 = {x=0; y=0} in 
  f p0 p0

Two identifiers are said to be aliases if they both name the same mutable 
record.  Inside f, the identifiers p1 and p2 might or might not be aliased, 
depending on which arguments are passed in.

SEE THE COURSE NOTES FOR MORE ON THIS EXAMPLE

Consider this call to f:



The Abstract Stack Machine

A model of imperative computation
or,

Location, Location, Location!



We Need a New Computation Model
• The simple model of computation we’ve used so far 

works well for pure value-oriented programming
– "Observable behavior” of a value is completely determined by 

its structure
– Two different calls to the same function with the same 

arguments always yield the same results
– These properties justify "replace 

equals by equals" reasoning

• But with mutable state…
– The location of values matters, not just their structure
– Results returned by functions are not fully determined by their 

arguments — can also depend on “hidden” mutable state



Workspace

Abstract Stack Machine
Three “spaces”…
• workspace

– the expression the computer is 
currently simplifying

– abstraction of the CPU

• stack
– temporary storage for local 

variables and saved work
– abstraction of (part of) RAM

• heap
– storage area for large data 

structures
– abstraction of (part of) RAM Abstract stack machine

HeapStack



Abstract Stack Machine
Initial state:
• workspace contains whole 

program
• stack and heap are empty

Machine operation:
• In each step, choose “next part” 

of the workspace expression and 
simplify it

• (Sometimes this will change the 
stack and/or heap)

• Stop when there are no more 
simplifications to be done

HeapStackWorkspace

Abstract stack machine

let x = …



HeapStack

Nil

Values and References
A value is either: 
•  a primitive value like an integer, or,
•  a reference to a location in the heap
A reference value is the address (location) of data in the heap.  

We draw a reference value as an arrow pointing to the data 
“located at” this address

Cons 3This box contains a 
reference value 

(the arrow itself)
The reference points to

this heap location 
containing a Cons cell

…and a reference value
pointing to the heap 
location of a Nil cell 



References are an Abstraction
In a real* computer, the memory consists of an array of 32-bit 
words, numbered 0 … 232-1    (for a 32-bit machine)

– A reference (pointer) is an address indicating where to look up a value
– Data structures are usually laid out in contiguous blocks of memory
– Constructor tags are just numbers chosen by the compiler

e.g., Nil = 42 and Cons = 120120120

Addresses 32-bit Values
0 ...
1 ...
2 4294967290
3 ...

... ...
4294967289 ...
4294967290 120120120
4294967291 3
4294967292 4294967294
4294967293 ...
4294967294 42

The “real”
heap

Nil

`
Cons 3

How we 
picture it

*this is not the full story; 
see CIS2400/3410/3800/4710



References are an Abstraction
• Usually, the specific addresses chosen for where to place data 

don't matter
– programmers don't want to think  at that level of detail
– aliasing (i.e., sharing the same location) is what matters

Addresses 32-bit Values
0 ...
1 ...
2 4294967290
3 …

... 4294967290
4294967289 ...
4294967290 120120120
4294967291 3
4294967292 4294967294
4294967293 ...
4294967294 42

The “real”
heap

Nil

`
Cons 3

Aliased references
are the same address



The ASM:
Simplifying variables, operators, 

let expressions, and if expressions

Using the stack instead of substitution



Simplification

let x = 10 + 12 in
let y = 2 + x in
  if x > 23 then 3 else 4
      

Workspace Stack Heap



Simplification

let x = 10 + 12 in
let y = 2 + x in
  if x > 23 then 3 else 4
      

Workspace Stack Heap



Simplification

let x = 22 in
let y = 2 + x in
  if x > 23 then 3 else 4
      

Workspace Stack Heap



Simplification

let x = 22 in
let y = 2 + x in
  if x > 23 then 3 else 4
      

Workspace Stack Heap

Instead of substituting x with its value in the rest of the
program…



Simplification

let y = 2 + x in
  if x > 23 then 3 else 4
      

Workspace Stack Heap

x 22

we push a binding for x onto the stack



Simplification

let y = 2 + x in
  if x > 23 then 3 else 4
      

Workspace Stack Heap

x 22

Variable x is not a value, so look it up in the stack



Simplification

let y = 2 + 22 in
  if x > 23 then 3 else 4
      

Workspace Stack Heap

x 22



Simplification

let y = 2 + 22 in
  if x > 23 then 3 else 4
      

Workspace Stack Heap

x 22



Simplification

let y = 24 in
  if x > 23 then 3 else 4
      

Workspace Stack Heap

x 22



Simplification

let y = 24 in
  if x > 23 then 3 else 4
      

Workspace Stack Heap

x 22



Simplification

if x > 23 then 3 else 4
      

Workspace Stack Heap

x 22

y 24



Simplification

if x > 23 then 3 else 4
      

Workspace Stack Heap

x 22

y 24

Looking up x in the stack proceeds from most recent 
entries to the least recent entries.  Note that the 
“top” (most recent part) of the stack is drawn on the 
bottom of the diagram.



Simplification

if 22 > 23 then 3 else 4
      

Workspace Stack Heap

x 22

y 24



Simplification

if 22 > 23 then 3 else 4
      

Workspace Stack Heap

x 22

y 24



Simplification

if false then 3 else 4
      

Workspace Stack Heap

x 22

y 24



Simplification

if false then 3 else 4
      

Workspace Stack Heap

x 22

y 24



Simplification

4
      

Workspace Stack Heap

x 22

y 24

DONE!



What to simplify next?
• At each step, the ASM finds the leftmost ready subexpression in the 

workspace
• An expression involving a primitive operator (e.g., “+”) is ready if all 

its arguments are values
– Expression is replaced with its result

• A let expression let x : t = e in body is ready if e is a value
– A new binding for x to e is added at the end of the stack
– let expression is replaced with body in the workspace

• A variable is always ready
– The variable is replaced by its binding in the stack, searching from the most 

recent bindings (this search can never fail!)

• A conditional expression if e then e1 else e2 is ready if e is 
either true or false
– The workspace is replaced with either e1 (if e is True)  or e2 (if e is False)





What does the Stack look like after simplifying the 
following code on the workspace?

let z = 20 in
let w = 2 + z in
  w
      

z 22

w 2 + z

Stack

z 20

w 22

Stack

w 22

Stack

w 22

z 20

Stack

1. 2. 3. 4.

ANSWER: 2





What does the Stack look like after simplifying the 
following code on the workspace?

let z = 20 in
let z = 2 + z in
  z
      

z 22

z 20

Stack

z 20

z 22

Stack

z 22

Stack

z 22

z 22

Stack

1. 2. 3. 4.

ANSWER: 2



• The reason for introducing the ASM model is to make heap 
locations and sharing explicit
– Now we can say what it means to “mutate a heap value in place.”

• We draw a record in the heap like this:
– The doubled outlines indicate that those

cells are mutable
– Everything else is immutable 

Mutable Records

type point = {mutable x:int; mutable y:int}

let p1 : point = {x=1; y=1}
let p2 : point = p1
let ans : int = (p2.x <- 17; p1.x)

x 1

y 1

A point record 
in the heap.



Allocate a Record

let p1 : point = {x=1; y=1}
let p2 : point = p1
let ans : int = 
    p2.x <- 17; p1.x

Workspace Stack Heap



Allocate a Record

let p1 : point = 
let p2 : point = p1
let ans : int = 
    p2.x <- 17; p1.x

Workspace Stack Heap

x 1

y 1



Let Expression

let p1 : point =    . 
let p2 : point = p1
let ans : int = 
    p2.x <- 17; p1.x

Workspace Stack Heap

x 1

y 1



Push p1

let p2 : point = p1
let ans : int = 
    p2.x <- 17; p1.x

Workspace Stack Heap
p1 x 1

y 1



Look Up ‘p1’

let p2 : point = p1
let ans : int = 
    p2.x <- 17; p1.x

Workspace Stack Heap
p1 x 1

y 1



Look Up ‘p1’

let p2 : point =   
let ans : int = 
    p2.x <- 17; p1.x

Workspace Stack Heap
p1 x 1

y 1

Recall: references are values… p2 names the value. 



Let Expression

let p2 : point =   . 
let ans : int = 
    p2.x <- 17; p1.x

Workspace Stack Heap
p1 x 1

y 1



Push p2

 
let ans : int = 
    p2.x <- 17; p1.x

Workspace Stack Heap
p1

p2

x 1

y 1

Now  p1 and p2 are references to the same heap record.
They are aliases – two different names for the same location.



Look Up ‘p2’

 
let ans : int = 
    p2.x <- 17; p1.x

Workspace Stack Heap
p1

p2

x 1

y 1



Look Up ‘p2’

 
let ans : int = 
      .x <- 17; p1.x

Workspace Stack Heap
p1

p2

x 1

y 1



Assign to x field

 
let ans : int = 
    .x <- 17; p1.x

Workspace Stack Heap
p1

p2

x 1

y 1



Assign to x field

 
let ans : int = 
    (); p1.x

Workspace Stack Heap
p1

p2

x 17

y 1

This is the step in which the ‘imperative’ update occurs.
The mutable field x has been modified in place to 
contain the value 17.



Sequence ‘;’ Discards Unit

 
let ans : int = 
    (); p1.x

Workspace Stack Heap
p1

p2

x 17

y 1



Look Up ‘p1’

 
let ans : int = 
    p1.x

Workspace Stack Heap
p1

p2

x 17

y 1



Look Up ‘p1’

 
let ans : int = 
      .x

Workspace Stack Heap
p1

p2

x 17

y 1



Project the ‘x’ field

 
let ans : int = 
    .x

Workspace Stack Heap
p1

p2

x 17

y 1



Project the ‘x’ field

 
let ans : int = 
    17

Workspace Stack Heap
p1

p2

x 17

y 1



Let Expression

 
let ans : int = 
    17

Workspace Stack Heap
p1

p2

x 17

y 1



Push ans

 

Workspace Stack Heap
p1

p2

ans 17

DONE!

x 17

y 1





What answer does the following function produce when called?

   

1. 17
2. 42
3. sometimes 17 and sometimes 42
4.f is ill typed

let f (p1:point) (p2:point) : int =
  p1.x <- 17;
  let z = p1.x in  
  p2.x <- 42;
  z

Answer: 1



What do the Stack and Heap look like after simplifying the following code on the 
workspace?

let p1 = {x=0; y=0} in
let p2 = p1 in 
p1.x <- 17;
let z = p1.x in
p2.x <- 42;
p1.x       

p1

Stack

1.

Heap

p2

z 17

x 42

y 0
p1

Stack Heap

p2

z 17

x 17

y 0

x 42

y 0

2.

Answer: 1



References and Equality

= vs. ==



Reference Equality
• Suppose we have two counters. Are they at the same location?

 type counter = { mutable count : int }
 let c1 : counter = …
 let c2 : counter = …
– We could increment one and see whether the other’s value changes.
– But we could also just test whether the references are aliases. 

• OCaml uses ‘==‘  to mean reference equality:
– two reference values are ‘==‘ if they point to the same location in the 

heap; so:

r2 == r3

not (r1 == r2)

r1 = r2

Stack Heap

r1

r2

r3

count 0

count 0



Structural vs. Reference Equality
• Structural (in)equality:     v1 = v2     v1 <> v2

– recursively traverses over the structure of the data, comparing the two 
values’ components for structural equality

– function values cannot be compared structurally
– structural equality can go into an infinite loop on cyclic structures
– appropriate for comparing immutable datatypes  

• Reference (in)equality:     v1 == v2    v1 != v2
– Only looks at where the two references point in the heap
– function values are only equal to themselves
– even if v1 = v2, we may not have v1 == v2
– appropriate for comparing mutable datatypes





What is the result of evaluating the following expression?

   

1. true
2. false
3. runtime error
4. compile-time error

let p1 : point = { x = 0; y = 0 } in
let p2 : point = p1 in

p1 = p2

Answer: true





What is the result of evaluating the following expression?

   

1. true
2. false
3. runtime error
4. compile-time error

let p1 : point = { x = 0; y = 0 } in
let p2 : point = p1 in

p1 == p2

Answer: true



What is the result of evaluating the following expression?

   

1. true
2. false

let p1 : point = { x = 0; y = 0 } in
let p2 : point = { x = 0; y = 0 } in

p1 == p2

Answer: false



What is the result of evaluating the following expression?

   

1. true
2. false

let p1 : point = { x = 0; y = 0 } in
let p2 : point = { x = 0; y = 0 } in
let l1 : point list = [p1] in
let l2 : point list = [p2] in

l1 = l2

Answer: true



What is the result of evaluating the following expression?

   

1. true
2. false

let p1 : point = { x = 0; y = 0 } in
let p2 : point = p1 in
let l1 : point list = [p1] in
let l2 : point list = [p2] in

l1 == l2

Answer: false



ASM: Lists and datatypes

Tracking the space usage of immutable data 
structures



Simplification

[1;2;3]
      

Workspace Stack Heap

1::2::3::[]
      

type ‘a list = 
 | Nil 
 | Cons of ‘a * ‘a list

For uniformity, we’ll 
pretend lists are declared 
like this:



Simplification

Cons (1,Cons (2,Cons (3,Nil)))
      

Workspace Stack Heap

type ‘a list = 
 | Nil 
 | Cons of ‘a * ‘a list

For uniformity, we’ll 
pretend lists are declared 
like this:



Simplification

Cons (1,Cons (2,Cons (3,Nil)))
      

Workspace Stack Heap



Simplification

Cons (1,Cons (2,Cons (3,   )))
      

Workspace Stack Heap
Nil



Simplification

Cons (1,Cons (2,Cons (3,   )))
      

Workspace Stack Heap
Nil



Simplification

Cons (1,Cons (2,  ))
      

Workspace Stack Heap
Nil

Cons 3



Simplification

Cons (1,Cons (2,  ))
      

Workspace Stack Heap
Nil

Cons 3



Simplification

Cons (1, )
      

Workspace Stack Heap
Nil

Cons 3

Cons 2



Simplification

Cons (1, )
      

Workspace Stack Heap
Nil

Cons 3

Cons 2



Simplification
Workspace Stack Heap

Nil

Cons 3

Cons 2

Cons 1

DONE!





What do the Stack and Heap look like after simplifying the 
following code on the workspace?

let z = Cons (1, Nil) in
let w = Cons (2, z) in
    w      

z

w

Stack

z

w

Stack

1. 2.

Heap
Nil

Cons 1

Cons 2

Heap
Nil

Cons 1

Nil

Cons 1

Cons 2ANSWER: 1



An Optimization
• Datatype constructors that carry no extra information can be 

treated as “small” values.
• Examples:  

• They can be placed directly in the stack.
• They don’t require a reference in the heap.
• N.b.: This optimization affects reference equality.

type ‘a list = 
| Nil
| Cons of ‘a * ‘a list

type ‘a option = 
| None
| Some of ‘a

type ‘a tree = 
| Empty
| Node of ‘a tree * ‘a * ‘a tree

Saves space!



Example Optimization
Workspace Stack Heap

Nil

Cons 3

Cons 2

Cons 1



Example Optimization
Workspace Stack Heap

Cons 3 Nil

Cons 2

Cons 1

Nil

Idea: because constructors with
no data are “small”, they take
the same space as a reference.

Rather than refer to them 
indirectly via a reference, 
just put them in place.

This implies that:
   None == None
   [] == []
   Empty == Empty



ASM: functions

Tracking the space usage of function calls



Function Simplification

let add1 (x : int) : int =
  x + 1 in
add1 (add1 0)  

Workspace Stack Heap



Function Simplification

let add1 (x : int) : int =
x + 1 in

add1 (add1 0)  

Workspace Stack Heap

First step: replace 
declaration of add1 with 
more primitive version 



Function Simplification

let add1 : int ->  int =
  fun (x:int) -> x + 1 in
add1 (add1 0)  

Workspace Stack Heap



Function Simplification

let add1 : int ->  int =
  fun (x:int) -> x + 1 in
add1 (add1 0)  

Workspace Stack Heap



Function Simplification

let add1 =    in
   add1 (add1 0)  

Workspace Stack Heap

fun (x:int) -> x + 1
 



Function Simplification

let add1 =    in
   add1 (add1 0)  

Workspace Stack Heap

fun (x:int) -> x + 1
 



Function Simplification

add1 (add1 0)  

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1



Function Simplification

add1 (add1 0)  

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1



Function Simplification

add1 (    0)  

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1



Function Simplification

add1 (    0)  

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

Here comes the 
crucial step…!



Do the Call, Saving the Workspace

x+1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

add1 ( )  

x 0

Note the saved workspace and pushed function argument
•   compare with the workspace on the previous slide
•   the name ‘x’ comes from the parameter name in the heap

 The new workspace contains the body of the function



Function Simplification

x+1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

add1 (add1 0)  

x 0

add1 ( )  



Function Simplification

0+1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

add1 (add1 0)  

x 0

add1 ( )  



Function Simplification

0+1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

add1 (add1 0)  

x 0

add1 ( )  



Function Simplification

1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

add1 (add1 0)  

x 0

add1 ( )  

POP!
The workspace has been 
reduced to a value, but 
there is still some 
computation left to 
finish on the stack



Function Simplification

add1 1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

See how the ASM restored the saved workspace, 
replacing its `hole’ with the value computed into 
the old workspace.  (Compare with previous slide.)



Function Simplification

add1 1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

Now we have to do it all 
over again for the second 
invocation of add1…



Function Simplification

1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1



Function Simplification

    1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1



Function Simplification

x+1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

x 1

(____)



Function Simplification

x+1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

add1 1  

x 1

(____)



Function Simplification

1+1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

add1 1  

x 1

(____)



Function Simplification

1+1   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

add1 1  

x 1

(____)



Function Simplification

2   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

add1 1  

x 1

(____)

POP!



Function Simplification

2   

Workspace Stack Heap

fun (x:int) -> x + 1
 

add1

DONE!



Simplifying Functions
• A function definition “let f (x1:t1)…(xn:tn) = e in body” is always 

ready.
– It is simplified by replacing it with “let f = fun (x:t1)…(x:tn) = e in body”

• A function “fun (x1:t1)…(xn:tn) = e” is always ready.
– It is simplified by moving the function to the heap and replacing the 

function expression with a pointer to that heap data.

• A function call is ready if the function and its arguments are 
all values
– it is simplified by

• saving the current workspace contents on the stack
• adding bindings for the function’s parameter variables (to the actual 

argument values) to the end of the stack
• copying the function’s body to the workspace



Function Completion
• When the workspace contains just a single value, we pop the 

stack by removing everything back to (and including) the last 
saved workspace contents.  

• The value currently in the workspace is substituted for the 
function application expression in the saved workspace 
contents, which are put back into the workspace.

• If there aren’t any saved workspace contents in the stack, the 
whole computation is finished and the value in the workspace 
is its final result.


