
Programming Languages
and Techniques

(CIS1200)

Lecture 14

Mutable State, Aliasing, and
the Abstract Stack Machine

Chapters 14 and 15

Announcements (1)
• HW04 available
– Due in 2 weeks (October 15)

• Fall Break this week
– No class on Friday
– Recitations are cancelled for this week
– No Office Hours from Thu-Sun

• No office hours for Benjamin next Monday
(Oct 7)

Review: Mutable State

Records
• By default, all record fields are immutable—once initialized,

they can never be modified.

type point = {x:int; y:int}

let p0 = {x=0; y=0}
;; do_something_with p0
;; print_endline ("p0.x = " ^ (string_of_int p0.x))

let p1 = {x=(p0.x + 1); y=(p0.y + 1)}
;; do_something_with p1
;; print_endline ("p1.x = " ^ (string_of_int p1.x))

This will always be 0, no matter
what "do_something_with" does

This will always be 1…

Mutable Record Fields
• By default, all record fields are immutable—once initialized,

they can never be modified.
• OCaml also supports mutable fields that can be imperatively

updated by the “set” command: record.field <- val

type point = {mutable x:int; mutable y:int}

let p0 = {x=0; y=0}
(* set the x coord of p0 to 17 *)
;; p0.x <- 17
;; print_endline ("p0.x = " ^ (string_of_int p0.x))

p0.x = 17

note the ‘mutable’ keyword

in-place update of p0.x

Record Update
• Functions can assign to mutable record fields
• Note that the return type of ‘<-’ is unit

– i.e., it is a command

• the result type of shift is also unit
– i.e., shift is a user-defined command

type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)
let shift (p:point) (dx:int) (dy:int) : unit =
 p.x <- p.x + dx;
 p.y <- p.y + dy

What answer does the following function produce when called?

1. 17
2. something else
3. sometimes 17 and sometimes something else
4. f is ill typed

type point = {mutable x:int; mutable y:int}

let f (p1:point) (p2:point) : int =
 p1.x <- 17;
 p2.x <- 42;
 p1.x

ANSWER: 3

The Challenge of Mutable State: Aliasing

let f (p1:point) (p2:point) : int =
 p1.x <- 17;
 p2.x <- 42;
 p1.x

let p0 = {x=0; y=0} in
 f p0 p0

Two identifiers are said to be aliases if they both name the same mutable
record. Inside f, the identifiers p1 and p2 might or might not be aliased,
depending on which arguments are passed in.

SEE THE COURSE NOTES FOR MORE ON THIS EXAMPLE

Consider this call to f:

The Abstract Stack Machine

A model of imperative computation
or,

Location, Location, Location!

We Need a New Computation Model
• The simple model of computation we’ve used so far

works well for pure value-oriented programming
– "Observable behavior” of a value is completely determined by

its structure
– Two different calls to the same function with the same

arguments always yield the same results
– These properties justify "replace

equals by equals" reasoning

• But with mutable state…
– The location of values matters, not just their structure
– Results returned by functions are not fully determined by their

arguments — can also depend on “hidden” mutable state

Workspace

Abstract Stack Machine
Three “spaces”…
• workspace

– the expression the computer is
currently simplifying

– abstraction of the CPU

• stack
– temporary storage for local

variables and saved work
– abstraction of (part of) RAM

• heap
– storage area for large data

structures
– abstraction of (part of) RAM Abstract stack machine

HeapStack

Abstract Stack Machine
Initial state:
• workspace contains whole

program
• stack and heap are empty

Machine operation:
• In each step, choose “next part”

of the workspace expression and
simplify it

• (Sometimes this will change the
stack and/or heap)

• Stop when there are no more
simplifications to be done

HeapStackWorkspace

Abstract stack machine

let x = …

HeapStack

Nil

Values and References
A value is either:
• a primitive value like an integer, or,
• a reference to a location in the heap
A reference value is the address (location) of data in the heap.

We draw a reference value as an arrow pointing to the data
“located at” this address

Cons 3This box contains a
reference value

(the arrow itself)
The reference points to

this heap location
containing a Cons cell

…and a reference value
pointing to the heap
location of a Nil cell

References are an Abstraction
In a real* computer, the memory consists of an array of 32-bit
words, numbered 0 … 232-1 (for a 32-bit machine)

– A reference (pointer) is an address indicating where to look up a value
– Data structures are usually laid out in contiguous blocks of memory
– Constructor tags are just numbers chosen by the compiler

e.g., Nil = 42 and Cons = 120120120

Addresses 32-bit Values
0 ...
1 ...
2 4294967290
3 ...

... ...
4294967289 ...
4294967290 120120120
4294967291 3
4294967292 4294967294
4294967293 ...
4294967294 42

The “real”
heap

Nil

`
Cons 3

How we
picture it

*this is not the full story;
see CIS2400/3410/3800/4710

References are an Abstraction
• Usually, the specific addresses chosen for where to place data

don't matter
– programmers don't want to think at that level of detail
– aliasing (i.e., sharing the same location) is what matters

Addresses 32-bit Values
0 ...
1 ...
2 4294967290
3 …

... 4294967290
4294967289 ...
4294967290 120120120
4294967291 3
4294967292 4294967294
4294967293 ...
4294967294 42

The “real”
heap

Nil

`
Cons 3

Aliased references
are the same address

The ASM:
Simplifying variables, operators,

let expressions, and if expressions

Using the stack instead of substitution

Simplification

let x = 10 + 12 in
let y = 2 + x in
 if x > 23 then 3 else 4

Workspace Stack Heap

Simplification

let x = 10 + 12 in
let y = 2 + x in
 if x > 23 then 3 else 4

Workspace Stack Heap

Simplification

let x = 22 in
let y = 2 + x in
 if x > 23 then 3 else 4

Workspace Stack Heap

Simplification

let x = 22 in
let y = 2 + x in
 if x > 23 then 3 else 4

Workspace Stack Heap

Instead of substituting x with its value in the rest of the
program…

Simplification

let y = 2 + x in
 if x > 23 then 3 else 4

Workspace Stack Heap

x 22

we push a binding for x onto the stack

Simplification

let y = 2 + x in
 if x > 23 then 3 else 4

Workspace Stack Heap

x 22

Variable x is not a value, so look it up in the stack

Simplification

let y = 2 + 22 in
 if x > 23 then 3 else 4

Workspace Stack Heap

x 22

Simplification

let y = 2 + 22 in
 if x > 23 then 3 else 4

Workspace Stack Heap

x 22

Simplification

let y = 24 in
 if x > 23 then 3 else 4

Workspace Stack Heap

x 22

Simplification

let y = 24 in
 if x > 23 then 3 else 4

Workspace Stack Heap

x 22

Simplification

if x > 23 then 3 else 4

Workspace Stack Heap

x 22

y 24

Simplification

if x > 23 then 3 else 4

Workspace Stack Heap

x 22

y 24

Looking up x in the stack proceeds from most recent
entries to the least recent entries. Note that the
“top” (most recent part) of the stack is drawn on the
bottom of the diagram.

Simplification

if 22 > 23 then 3 else 4

Workspace Stack Heap

x 22

y 24

Simplification

if 22 > 23 then 3 else 4

Workspace Stack Heap

x 22

y 24

Simplification

if false then 3 else 4

Workspace Stack Heap

x 22

y 24

Simplification

if false then 3 else 4

Workspace Stack Heap

x 22

y 24

Simplification

4

Workspace Stack Heap

x 22

y 24

DONE!

What to simplify next?
• At each step, the ASM finds the leftmost ready subexpression in the

workspace
• An expression involving a primitive operator (e.g., “+”) is ready if all

its arguments are values
– Expression is replaced with its result

• A let expression let x : t = e in body is ready if e is a value
– A new binding for x to e is added at the end of the stack
– let expression is replaced with body in the workspace

• A variable is always ready
– The variable is replaced by its binding in the stack, searching from the most

recent bindings (this search can never fail!)

• A conditional expression if e then e1 else e2 is ready if e is
either true or false
– The workspace is replaced with either e1 (if e is True) or e2 (if e is False)

What does the Stack look like after simplifying the
following code on the workspace?

let z = 20 in
let w = 2 + z in
 w

z 22

w 2 + z

Stack

z 20

w 22

Stack

w 22

Stack

w 22

z 20

Stack

1. 2. 3. 4.

ANSWER: 2

What does the Stack look like after simplifying the
following code on the workspace?

let z = 20 in
let z = 2 + z in
 z

z 22

z 20

Stack

z 20

z 22

Stack

z 22

Stack

z 22

z 22

Stack

1. 2. 3. 4.

ANSWER: 2

• The reason for introducing the ASM model is to make heap
locations and sharing explicit
– Now we can say what it means to “mutate a heap value in place.”

• We draw a record in the heap like this:
– The doubled outlines indicate that those

cells are mutable
– Everything else is immutable

Mutable Records

type point = {mutable x:int; mutable y:int}

let p1 : point = {x=1; y=1}
let p2 : point = p1
let ans : int = (p2.x <- 17; p1.x)

x 1

y 1

A point record
in the heap.

Allocate a Record

let p1 : point = {x=1; y=1}
let p2 : point = p1
let ans : int =
 p2.x <- 17; p1.x

Workspace Stack Heap

Allocate a Record

let p1 : point =
let p2 : point = p1
let ans : int =
 p2.x <- 17; p1.x

Workspace Stack Heap

x 1

y 1

Let Expression

let p1 : point = .
let p2 : point = p1
let ans : int =
 p2.x <- 17; p1.x

Workspace Stack Heap

x 1

y 1

Push p1

let p2 : point = p1
let ans : int =
 p2.x <- 17; p1.x

Workspace Stack Heap
p1 x 1

y 1

Look Up ‘p1’

let p2 : point = p1
let ans : int =
 p2.x <- 17; p1.x

Workspace Stack Heap
p1 x 1

y 1

Look Up ‘p1’

let p2 : point =
let ans : int =
 p2.x <- 17; p1.x

Workspace Stack Heap
p1 x 1

y 1

Recall: references are values… p2 names the value.

Let Expression

let p2 : point = .
let ans : int =
 p2.x <- 17; p1.x

Workspace Stack Heap
p1 x 1

y 1

Push p2

let ans : int =
 p2.x <- 17; p1.x

Workspace Stack Heap
p1

p2

x 1

y 1

Now p1 and p2 are references to the same heap record.
They are aliases – two different names for the same location.

Look Up ‘p2’

let ans : int =
 p2.x <- 17; p1.x

Workspace Stack Heap
p1

p2

x 1

y 1

Look Up ‘p2’

let ans : int =
 .x <- 17; p1.x

Workspace Stack Heap
p1

p2

x 1

y 1

Assign to x field

let ans : int =
 .x <- 17; p1.x

Workspace Stack Heap
p1

p2

x 1

y 1

Assign to x field

let ans : int =
 (); p1.x

Workspace Stack Heap
p1

p2

x 17

y 1

This is the step in which the ‘imperative’ update occurs.
The mutable field x has been modified in place to
contain the value 17.

Sequence ‘;’ Discards Unit

let ans : int =
 (); p1.x

Workspace Stack Heap
p1

p2

x 17

y 1

Look Up ‘p1’

let ans : int =
 p1.x

Workspace Stack Heap
p1

p2

x 17

y 1

Look Up ‘p1’

let ans : int =
 .x

Workspace Stack Heap
p1

p2

x 17

y 1

Project the ‘x’ field

let ans : int =
 .x

Workspace Stack Heap
p1

p2

x 17

y 1

Project the ‘x’ field

let ans : int =
 17

Workspace Stack Heap
p1

p2

x 17

y 1

Let Expression

let ans : int =
 17

Workspace Stack Heap
p1

p2

x 17

y 1

Push ans

Workspace Stack Heap
p1

p2

ans 17

DONE!

x 17

y 1

What answer does the following function produce when called?

1. 17
2. 42
3. sometimes 17 and sometimes 42
4.f is ill typed

let f (p1:point) (p2:point) : int =
 p1.x <- 17;
 let z = p1.x in
 p2.x <- 42;
 z

Answer: 1

What do the Stack and Heap look like after simplifying the following code on the
workspace?

let p1 = {x=0; y=0} in
let p2 = p1 in
p1.x <- 17;
let z = p1.x in
p2.x <- 42;
p1.x

p1

Stack

1.

Heap

p2

z 17

x 42

y 0
p1

Stack Heap

p2

z 17

x 17

y 0

x 42

y 0

2.

Answer: 1

References and Equality

= vs. ==

Reference Equality
• Suppose we have two counters. Are they at the same location?

 type counter = { mutable count : int }
 let c1 : counter = …
 let c2 : counter = …
– We could increment one and see whether the other’s value changes.
– But we could also just test whether the references are aliases.

• OCaml uses ‘==‘ to mean reference equality:
– two reference values are ‘==‘ if they point to the same location in the

heap; so:

r2 == r3

not (r1 == r2)

r1 = r2

Stack Heap

r1

r2

r3

count 0

count 0

Structural vs. Reference Equality
• Structural (in)equality: v1 = v2 v1 <> v2

– recursively traverses over the structure of the data, comparing the two
values’ components for structural equality

– function values cannot be compared structurally
– structural equality can go into an infinite loop on cyclic structures
– appropriate for comparing immutable datatypes

• Reference (in)equality: v1 == v2 v1 != v2
– Only looks at where the two references point in the heap
– function values are only equal to themselves
– even if v1 = v2, we may not have v1 == v2
– appropriate for comparing mutable datatypes

What is the result of evaluating the following expression?

1. true
2. false
3. runtime error
4. compile-time error

let p1 : point = { x = 0; y = 0 } in
let p2 : point = p1 in

p1 = p2

Answer: true

What is the result of evaluating the following expression?

1. true
2. false
3. runtime error
4. compile-time error

let p1 : point = { x = 0; y = 0 } in
let p2 : point = p1 in

p1 == p2

Answer: true

What is the result of evaluating the following expression?

1. true
2. false

let p1 : point = { x = 0; y = 0 } in
let p2 : point = { x = 0; y = 0 } in

p1 == p2

Answer: false

What is the result of evaluating the following expression?

1. true
2. false

let p1 : point = { x = 0; y = 0 } in
let p2 : point = { x = 0; y = 0 } in
let l1 : point list = [p1] in
let l2 : point list = [p2] in

l1 = l2

Answer: true

What is the result of evaluating the following expression?

1. true
2. false

let p1 : point = { x = 0; y = 0 } in
let p2 : point = p1 in
let l1 : point list = [p1] in
let l2 : point list = [p2] in

l1 == l2

Answer: false

ASM: Lists and datatypes

Tracking the space usage of immutable data
structures

Simplification

[1;2;3]

Workspace Stack Heap

1::2::3::[]

type ‘a list =
 | Nil
 | Cons of ‘a * ‘a list

For uniformity, we’ll
pretend lists are declared
like this:

Simplification

Cons (1,Cons (2,Cons (3,Nil)))

Workspace Stack Heap

type ‘a list =
 | Nil
 | Cons of ‘a * ‘a list

For uniformity, we’ll
pretend lists are declared
like this:

Simplification

Cons (1,Cons (2,Cons (3,Nil)))

Workspace Stack Heap

Simplification

Cons (1,Cons (2,Cons (3,)))

Workspace Stack Heap
Nil

Simplification

Cons (1,Cons (2,Cons (3,)))

Workspace Stack Heap
Nil

Simplification

Cons (1,Cons (2,))

Workspace Stack Heap
Nil

Cons 3

Simplification

Cons (1,Cons (2,))

Workspace Stack Heap
Nil

Cons 3

Simplification

Cons (1,)

Workspace Stack Heap
Nil

Cons 3

Cons 2

Simplification

Cons (1,)

Workspace Stack Heap
Nil

Cons 3

Cons 2

Simplification
Workspace Stack Heap

Nil

Cons 3

Cons 2

Cons 1

DONE!

What do the Stack and Heap look like after simplifying the
following code on the workspace?

let z = Cons (1, Nil) in
let w = Cons (2, z) in
 w

z

w

Stack

z

w

Stack

1. 2.

Heap
Nil

Cons 1

Cons 2

Heap
Nil

Cons 1

Nil

Cons 1

Cons 2ANSWER: 1

An Optimization
• Datatype constructors that carry no extra information can be

treated as “small” values.
• Examples:

• They can be placed directly in the stack.
• They don’t require a reference in the heap.
• N.b.: This optimization affects reference equality.

type ‘a list =
| Nil
| Cons of ‘a * ‘a list

type ‘a option =
| None
| Some of ‘a

type ‘a tree =
| Empty
| Node of ‘a tree * ‘a * ‘a tree

Saves space!

Example Optimization
Workspace Stack Heap

Nil

Cons 3

Cons 2

Cons 1

Example Optimization
Workspace Stack Heap

Cons 3 Nil

Cons 2

Cons 1

Nil

Idea: because constructors with
no data are “small”, they take
the same space as a reference.

Rather than refer to them
indirectly via a reference,
just put them in place.

This implies that:
 None == None
 [] == []
 Empty == Empty

ASM: functions

Tracking the space usage of function calls

Function Simplification

let add1 (x : int) : int =
 x + 1 in
add1 (add1 0)

Workspace Stack Heap

Function Simplification

let add1 (x : int) : int =
x + 1 in

add1 (add1 0)

Workspace Stack Heap

First step: replace
declaration of add1 with
more primitive version

Function Simplification

let add1 : int -> int =
 fun (x:int) -> x + 1 in
add1 (add1 0)

Workspace Stack Heap

Function Simplification

let add1 : int -> int =
 fun (x:int) -> x + 1 in
add1 (add1 0)

Workspace Stack Heap

Function Simplification

let add1 = in
 add1 (add1 0)

Workspace Stack Heap

fun (x:int) -> x + 1

Function Simplification

let add1 = in
 add1 (add1 0)

Workspace Stack Heap

fun (x:int) -> x + 1

Function Simplification

add1 (add1 0)

Workspace Stack Heap

fun (x:int) -> x + 1

add1

Function Simplification

add1 (add1 0)

Workspace Stack Heap

fun (x:int) -> x + 1

add1

Function Simplification

add1 (0)

Workspace Stack Heap

fun (x:int) -> x + 1

add1

Function Simplification

add1 (0)

Workspace Stack Heap

fun (x:int) -> x + 1

add1

Here comes the
crucial step…!

Do the Call, Saving the Workspace

x+1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

add1 ()

x 0

Note the saved workspace and pushed function argument
• compare with the workspace on the previous slide
• the name ‘x’ comes from the parameter name in the heap

 The new workspace contains the body of the function

Function Simplification

x+1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

add1 (add1 0)

x 0

add1 ()

Function Simplification

0+1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

add1 (add1 0)

x 0

add1 ()

Function Simplification

0+1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

add1 (add1 0)

x 0

add1 ()

Function Simplification

1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

add1 (add1 0)

x 0

add1 ()

POP!
The workspace has been
reduced to a value, but
there is still some
computation left to
finish on the stack

Function Simplification

add1 1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

See how the ASM restored the saved workspace,
replacing its `hole’ with the value computed into
the old workspace. (Compare with previous slide.)

Function Simplification

add1 1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

Now we have to do it all
over again for the second
invocation of add1…

Function Simplification

1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

Function Simplification

 1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

Function Simplification

x+1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

x 1

(____)

Function Simplification

x+1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

add1 1

x 1

(____)

Function Simplification

1+1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

add1 1

x 1

(____)

Function Simplification

1+1

Workspace Stack Heap

fun (x:int) -> x + 1

add1

add1 1

x 1

(____)

Function Simplification

2

Workspace Stack Heap

fun (x:int) -> x + 1

add1

add1 1

x 1

(____)

POP!

Function Simplification

2

Workspace Stack Heap

fun (x:int) -> x + 1

add1

DONE!

Simplifying Functions
• A function definition “let f (x1:t1)…(xn:tn) = e in body” is always

ready.
– It is simplified by replacing it with “let f = fun (x:t1)…(x:tn) = e in body”

• A function “fun (x1:t1)…(xn:tn) = e” is always ready.
– It is simplified by moving the function to the heap and replacing the

function expression with a pointer to that heap data.

• A function call is ready if the function and its arguments are
all values
– it is simplified by

• saving the current workspace contents on the stack
• adding bindings for the function’s parameter variables (to the actual

argument values) to the end of the stack
• copying the function’s body to the workspace

Function Completion
• When the workspace contains just a single value, we pop the

stack by removing everything back to (and including) the last
saved workspace contents.

• The value currently in the workspace is substituted for the
function application expression in the saved workspace
contents, which are put back into the workspace.

• If there aren’t any saved workspace contents in the stack, the
whole computation is finished and the value in the workspace
is its final result.

