
Programming Languages
and Techniques

(CIS1200)

Lecture 18

GUI Library Design
Chapter 18

Announcements
• HW04 due tomorrow (at 11.59pm)

• HW05 available soon, due Thursday, October 24th

(at 11.59pm)
– Start early!
– Tasks 0-1 can be done after class today
– Tasks 2-4 can be done after class on Wednesday
– Tasks 5-6 can be done after class on Friday

• Final Exam
– Tuesday, December 17th, 12-2pm

Hidden State

Encapsulating State

An “incr” function
A function with internal state:

Drawbacks:
– No modularity: There is only one counter in the world. If we want

another counter, we need to build another counter_state value (say,
ctr2) and another incrementing function (incr2)

– No encapsulation: Code anywhere in the rest of the program can
directly modify count

type counter_state = { mutable count:int }

let ctr = { count = 0 }

(* each call to incr will produce the next integer *)
let incr () : int =
 ctr.count <- ctr.count + 1;
 ctr.count

Using Hidden State
Better: Make a function that creates a counter state plus an incr
function each time a counter is needed

(* More useful: a counter generator: *)
let mk_incr () : unit -> int =
 (* this ctr is private to the returned function *)
 let ctr = { count = 0 } in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

(* make one counter *)
let incr1 : unit -> int = mk_incr ()

(* make another counter *)
let incr2 : unit -> int = mk_incr ()

What number is printed by this program?

1. 1
2. 2
3. 3
4. other

Answer: 1

let mk_incr () : unit -> int =
 let ctr = { count = 0 } in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

let incr1 = mk_incr () (* make one counter *)
let incr2 = mk_incr () (* and another *)

let _ = incr1 () in print_int (incr2 ())

Running mk_incr

let mk_incr () : unit -> int =
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap

Running mk_incr

let mk_incr : unit -> unit ->
int = fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap

Running mk_incr

let mk_incr : unit -> unit ->
int = fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap

Running mk_incr

let mk_incr : unit -> unit ->
int =

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Running mk_incr

let mk_incr : unit -> unit ->
int = .

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Running mk_incr

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

Running mk_incr

let incr1 : unit -> int =
mk_incr ()

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

Running mk_incr

let incr1 : unit -> int =
(())

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

Running mk_incr

let incr1 : unit -> int =
(())

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

Running mk_incr

let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

Running mk_incr

let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

Running mk_incr

let ctr = in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0

Running mk_incr

let ctr = in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0

Running mk_incr

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0
ctr

Running mk_incr

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0
ctr

Local Functions (wrong)
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0
ctr

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

Local Functions (wrong)
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0
ctr

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

POP!

Local Functions (wrong)
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

let incr1 : unit -> int =
()

Uh Oh! No way to access
ctr when we call this

function

Local Functions (right)
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0
ctr

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.countNote: We need one refinement of the

ASM model that we’ve explained so
far. Why?

The function body that we’re putting
in the heap mentions “ctr”, which is on
the stack at the moment but about to
be popped off…

…so we save a copy of the
relevant stack binding with
the function itself.

This package of “function
body plus bindings” is called
a closure…

ctr

Key ste
p!

Local Functions
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

let incr1 : unit -> int =
()

count 0
ctr

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

POP!

Local Functions
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

let incr1 : unit -> int =
()

Local Functions
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

let incr1 : unit -> int =
()

Local Functions
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

DONE!
Now the count record
is accessible only via the
incr1 function. This is the
sense in which the state
is “private” to incr1.

Now let’s run “incr1 ()”
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1 () incr1

Now let’s run “incr1 ()”
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1 () incr1

Now let’s run “incr1 ()”
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

(()) incr1

Now let’s run “incr1 ()”
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

(()) incr1

Now let’s run “incr1 ()”

ctr.count <- ctr.count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Tail Call!

NOTE: Since the function had
some saved stack bindings,
we add them to the stack
at the same time that we copy
the code into the workspace.

Now let’s run “incr1 ()”

ctr.count <- ctr.count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- ctr.count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- ctr.count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- .count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- .count + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- 0 + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- 0 + 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count <- 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

 .count <- 1;
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

();
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

();
ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

ctr.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

.count

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

1

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

Now let’s run “incr1 ()”

1

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

ctr

POP!

Now let’s run “incr1 ()”

1

Workspace Stack Heap
fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

DONE!

Now Let’s run mk_incr again
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

let incr2 : unit -> int =
mk_incr () incr1

Now Let’s run mk_incr again
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

let incr2 : unit -> int =
mk_incr () incr1

…lots of steps…

After creating incr2…
Workspace Stack Heap

fun () ->
 let ctr = {count = 0} in
 fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

mk_incr

count 1

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr1

count 0

fun () ->
 ctr.count <- ctr.count + 1;
 ctr.count

ctr

incr2

Notice that the two different incr
functions have separate local states
because a new count record was
created in each call to mk_incr.

Key Idea: Closures

• A closure is a function with local bindings (i.e., part of the stack),
stored together on the heap
– Closures are the dynamic (run time) implementation of static scope
– When functions are allocated on the heap, we copy part of the stack
– When the functions are called, the copy goes back on the stack

• Only immutable variables can be stored in closures
– All variables in OCaml are immutable (even if they point to mutable data

structures in the heap)

let f : int -> bool =
 let x : int = 3 in
 let y : int = 4 in
 (fun z -> x = z + y)

In the code, x and y are defined
in a local scope

Heap

x 3
y 4

fun (z) -> x = y + z

At run time, x and y are copied
when f is stored in the heap

f

Stack Heap

y 4

x 3

Objects

One step further…
• mk_incr illustrates how to create different instance of local

state so that we can make as many counters as we need
– this state is encapsulated because it is only accessible by the closure

• What if we wanted to bundle together multiple operations
that share the same local state?
– e.g. incr and decr operations that work on the same counter state

Key Concept: Object
An object consists of:
• encapsulated mutable state (fields)
• operations that manipulate that state (methods)

A Counter Object
(* The type of counter objects *)
type counter = {
 get : unit -> int;
 incr : unit -> unit;
 decr : unit -> unit;
 reset : unit -> unit;
}

(* Create a fresh counter object with hidden state: *)
let new_counter () : counter =
 let ctr = {count = 0} in
 {
 get = (fun () -> ctr.count) ;
 incr = (fun () -> ctr.count <- ctr.count + 1) ;
 decr = (fun () -> ctr.count <- ctr.count - 1) ;
 reset = (fun () -> ctr.count <- 0) ;
 }

let c1 = new_counter ()
Stack Heap

fun () ->
 let ctr = {count = 0} in
 { … }

new_counter

count 0
fun () -> ctr.count

ctr

fun () ->
 ctr.count <- ctr.count + 1

ctr

fun () ->
 ctr.count <- ctr.count – 1

ctr

fun () ->
 ctr.count <- 0

ctr

get

incr

decr

reset

c1

Using Counter Objects
(* A helper function to create a nice string for printing *)
let ctr_string (s:string) (i:int) =
 s ^ ".ctr = " ^ (string_of_int i) ^ "\n"

let c1 = new_counter ()
let c2 = new_counter ()

;; print_string (ctr_string "c1" (c1.get ()))
;; c1.incr ()
;; c1.incr ()
;; print_string (ctr_string "c1" (c1.get ()))
;; c1.decr ()
;; print_string (ctr_string "c1" (c1.get ()))
;; c2.incr ()
;; print_string (ctr_string "c2" (c2.get ()))
;; c2.decr ()
;; print_string (ctr_string "c2" (c2.get ()))

Objects and GUIs

Where we’re going…
• HW 5: Build a GUI library and client application from scratch

in OCaml

• Goals:
– Practice with first-class functions and hidden state (Ch 17)
– Bridge to object-oriented programming in Java
– Illustrate the event-driven programming model
– Give a feel for how GUI libraries (like Java’s Swing) are put

together
– Apply everything we’ve seen so far to do some pretty

serious programming

67

Building a GUI library & application

69

Step #1: Understand the Problem
• There are two separate parts of this homework: an

application (Paint) and a GUI library (several files) used to
build the application

• What are the concepts involved in GUI libraries and how do
they relate to each other?

• How can we separate the various concerns on the project?

• Goal: The library should be reusable. It should be useful for
other applications besides Paint.

70

Gctx

Project Architecture

Paint

Native
graphics
library

GUI
Library

Application

Widget

OCaml’s Graphics Module (graphics.cma)

Eventloop

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

Step #2, Interfaces: Project Architecture*
*program snippets will be color-coded according to this diagram

71

Starting point: The low-level Graphics module

• OCaml’s Graphics library provides very basic primitives
for:
– Creating an area in the screen for graphics
– Drawing various shapes: points, lines, text, rectangles, circles,

etc.
– Getting the mouse position, whether the mouse button is

pressed, what key is pressed, etc.
– See: https://ocaml.github.io/graphics/graphics/Graphics/

• How do we go from that to a full-blown GUI library?

72

https://ocaml.github.io/graphics/graphics/Graphics/

GUI Library Design

Abstractions for graphical interfaces
See: GUI Demo Code project on Codio

Gctx

Interfaces: Project Architecture*

Paint

Native
graphics
library

GUI
Library

Application

Widget

OCaml’s Graphics Module (graphics.cma)

Eventloop

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.
Modules only call functions defined in libraries immediately below.

74

*program snippets will be color-coded according to this diagram

GUI terminology – Widget*
• Basic element of GUIs: examples include buttons, checkboxes,

windows, textboxes, canvases, scrollbars, labels
• Every widget

– knows how to repaint itself
– knows how to handle events
 like mouse clicks
– can calculate its size

(width * height)

• May be composed of other sub-widgets, for laying out
complex interfaces

*Each GUI library uses its own naming convention for what we call “widgets.” Java Swing calls
them “Components”; iOS UIKit calls them “UIViews”; WINAPI, GTK+, X11’s widgets, etc….

Hello World

75

type widget = {
 repaint: unit -> unit;
 handle: event -> unit;
 size: unit -> int*int
}

Simplified!

A “Hello World” application
(* Create some simple label (string) widgets *)
let l1 : widget = label "Hello"
let l2 : widget = label "World"
(* Compose them horizontally, adding some borders *)
let h : widget =
 border (hpair (border l1)
 (hpair (space (10,10)) (border l2)))

Hello World

On the screen

border

hpair

border

label

hpair

space border

labelWidget tree

hello.ml

76

Module: EventLoop

Top-level driver

Gctx.ml

GUI Architecture
• The eventloop is the main "driver" of a GUI application

– For now: focus on how widgets are drawn on the screen
– Later: deal with event handling

Paint.ml

Native
graphics
library

GUI
Library

Application

Widget.ml

OCaml’s Graphics Module (graphics.cma)

Eventloop.ml
The event
loop manages
the top-level
interactions
and causes
the display
to be repainted.

78

• Main loop for all GUI applications (simplified)
– “run” function takes top-level widget w as argument, containing all

other widgets in the application.

GUI terminology: “event loop”

let run (w:widget) : unit =
 w.repaint () ; …draw the widget the first time
 Graphics.loop …wait for user input (mouse click, etc)
 (fun e ->
 clear_graph ();
 w.handle e; …inform widget about the event…
 w.repaint () …update the widget's appearance…
)

79

let rec loop (f: event -> unit) : unit =
 let e = wait_next_event () in
 f e;
 loop f Graphics

Eventloop
(simplified)

Drawing: Containers

border

hpair

border

label

hpair

space border

label

Challenge: The label widget's repaint function draws text in two
different places. How can we make this code location independent?

.repaint ()

.repaint ()

.repaint ()

.repaint ()

.repaint ()

Container widgets propagate repaint commands to their children:

.repaint ()

.repaint ()

.repaint ()

Hello World

Module: Gctx

“Contextualizes” graphics operations

Gctx.ml

Challenge: Widget Layout
• Widgets are “things drawn on the screen”. How to make them

location independent?
• Idea: Use a graphics context to make drawing relative to a

widget’s current position

Paint.ml

Native
graphics
library

GUI
Library

Application

Widget.ml

OCaml’s Graphics Module (graphics.cma)

Eventloop.ml
The graphics
context
isolates the
widgets from
the Graphics
module.

82

GUI terminology – Graphics Context
• Translates coordinates

– Flips between OCaml and
 “standard” coordinates so origin
 is top-left
– Translates coordinates so all
 widgets can pretend that
 they are at the origin

• Also carries information about the
way things should be drawn
– color
– line width

• "Task 0" in the homework helps you understand the
interaction between Gctx and OCaml's Graphics module

83

Graphics Contexts

let top = Gctx.top_level in

84

This top box is a picture
of the whole window.

Graphics Contexts

let top = Gctx.top_level

85

The top graphics context represents
a coordinate system anchored
at (0,0), with current pen color
of black.

Graphics Contexts

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"

86

Drawing a string at (0,10) in this
context positions it on the left
edge and 10 pixels down.
The string is drawn in black.

CIS 1200

Graphics Contexts

87

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"

(* move origin and change the color *)
let nctx = Gctx.with_color
 (Gctx.translate top (dx,dy)) red

Translating the gctx has the
effect of shifting the origin
relative to the old origin.

CIS 1200

Graphics Contexts

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"

(* move origin and change the color *)
let nctx = Gctx.with_color
 (Gctx.translate top (dx,dy)) red

88

dx

dy CIS 1200

Graphics Contexts

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"

(* move origin and change the color *)
let nctx = Gctx.with_color
 (Gctx.translate top (dx,dy)) red

89

dx

dy

with_color changes the
current drawing color...

CIS 1200

Graphics Contexts

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"

(* move origin and change the color *)
let nctx = Gctx.with_color
 (Gctx.translate top (dx,dy)) red
;; Gctx.draw_string nctx (0,10) "CIS 1200" 90

dx

dy

Drawing the same string
at the same coordinates
in the new context causes
it to display at a translated
location and in the
new color.

CIS 1200

CIS 1200

Graphics Contexts

91

CIS 1200

CIS 1200

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"

(* move origin and change the color *)
let nctx = Gctx.with_color
 (Gctx.translate top (dx,dy)) red
;; Gctx.draw_string nctx (0,10) "CIS 1200"

The graphics contexts
aren't displayed anywhere,
they only serve as frames
of reference...

Graphics Contexts

93

CIS 1200

CIS 1200

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 1200"
let nctx = Gctx.with_color
 (Gctx.translate top (dx,dy)) red
;; Gctx.draw_string nctx (0,10) "CIS 1200"
let ctx3 = ???
;; Gctx.draw_string ctx3 (0,0) "HERE!"

HERE!

Which of the following can we fill in
for ??? to obtain the result shown?

1. Gctx.translate top (dx,0)
2. Gctx.translate top (0,-dy)
3. Gctx.translate nctx (dx,0)
4. Gctx.translate nctx (0,-dy)

Answer: 4

OCaml vs. “Standard” Coordinates

OCaml (0,0)

Standard (0,0)
size_x

size_y

Standard (x,y) = OCaml (x, size_y - y)

(x,y)

94

The graphics context also translates between
"standard" GUI coordinates, with (0,0) origin at the
upper left of the window, to OCaml's "Cartesian"
coordinates, with (0,0) origin at the lower left of the
window...

Module Gctx

(** The main (abstract) type of graphics contexts. *)
type gctx

(** The top-level graphics context *)
val top_level : gctx

(** A widget-relative position *)
type position = int * int

(** Display text at the given (relative) position *)
val draw_string : gctx -> position -> string -> unit
(** Draw a line between the two specified positions *)
val draw_line : gctx -> position -> position -> unit

(** Produce a new gctx shifted by (dx,dy) *)
val translate : gctx -> int * int -> gctx
(** Produce a new gctx with a different pen color *)
val with_color : gctx -> color -> gctx

95

Widget Layout

Building blocks of GUI applications
see simpleWidget.ml in GUI Demo Code project

Simple Widgets

• You can ask a simple widget to repaint itself
– Repainting is relative to a graphics context

• You can ask a simple widget to tell you its size
• (For now, we ignore event handling...)

(* An interface for simple GUI widgets *)
type widget = {
 repaint : Gctx.gctx -> unit;
 size : unit -> (int * int)
}
val label : string -> widget
val space : int * int -> widget
val border : widget -> widget
val hpair : widget -> widget -> widget
val canvas : int * int -> (Gctx.gctx -> unit) -> widget

simpleWidget.mli

Widget Examples

(* A simple widget that puts some text on the screen *)
let label (s:string) : widget =
{
 repaint = (fun (g:Gctx.gctx) -> Gctx.draw_string g (0,0) s);
 size = (fun () -> Gctx.text_size s)
}

(* A "blank" area widget -- it just takes up space *)
let space ((w,h):int*int) : widget =
{
 repaint = (fun (_:Gctx.gctx) -> ());
 size = (fun () -> (w,h))
}

simpleWidget.ml

simpleWidget.ml

The canvas Widget
• Region of the screen that can be drawn upon
• Has a fixed width and height
• Parameterized by a repaint method "r"

– …which can directly use the Gctx drawing routines to draw on the
canvas

let canvas ((w,h):int*int) (r: Gctx.gctx -> unit) : widget =
{
 repaint = r;
 size = (fun () -> (w,h))
}

simpleWidget.ml

Nested Widgets

Containers and Composition

The Border Widget Container

• let b = border w
• Draws a one-pixel wide border around contained widget w
• b’s size is slightly larger than w’s (+4 pixels in each dimension)

• b’s repaint method must call w’s repaint method

• When b asks w to repaint, b must translate the Gctx.t to (2,2) to account for the
displacement of w from b’s origin

0 1 2 3 …
0
1
2
3

w

w’s width

w’s
height

(w’s width + 4) - 1

translate
the Gctx

(w’s height + 4) - 1

The Border Widget

105

let border (w:widget):widget =
{
repaint = (fun (g:Gctx.gctx) ->
 let (width,height) = w.size () in
 let x = width + 3 in
 let y = height + 3 in
 Gctx.draw_line g (0,0) (x,0);
 Gctx.draw_line g (0,0) (0,y);
 Gctx.draw_line g (x,0) (x,y);
 Gctx.draw_line g (0,y) (x,y);
 let gw = Gctx.translate g (2,2) in
 w.repaint gw);

size = (fun () ->
 let (width,height) = w.size () in
 (width+4, height+4))
}

Draw the border

Display the interior

simpleWidget.ml

The hpair Widget Container

• let h = hpair w1 w2
• Creates a horizontally adjacent pair of widgets
• Aligns them by their top edges

– Must translate the Gctx when repainting w2
• Size is the sum of their widths and max of their heights

w1

w2

translate Gctx
to repaint w2

h’s width

h’s
height

The hpair Widget

107

let hpair (w1: widget) (w2: widget) : widget =
 {
 repaint = (fun (g: Gctx.gctx) ->
 let (x1, _) = w1.size () in begin
 w1.repaint g;
 w2.repaint (Gctx.translate g (x1,0))
 (* Note translation of the Gctx *)
 end);

size = (fun () ->
 let (x1, y1) = w1.size () in
 let (x2, y2) = w2.size () in

(x1 + x2, max y1 y2))
}

simpleWidget.ml

Translate the Gctx
to shift w2’s position
relative to widget-local
origin.

Container Widgets for layout

hlist is a container widget.
It takes a list of widgets and
turns them into a single one
by laying them out
horizontally (using hpair).

110

let color_toolbar : widget = hlist
 [color_button black; spacer;
 color_button white; spacer;
 color_button red; spacer;
 color_button green; spacer;
 color_button blue; spacer;
 color_button yellow; spacer;
 color_button cyan; spacer;
 color_button magenta]

paint.ml

What’s Next?
• You should be set to work on the first parts of HW05

• Coming up: How do widgets handle events??

• How to we compose widgets into a larger application
like the paint program?

