
Programming Languages
and Techniques

(CIS1200)

Lecture 20

GUI library: Events and State
Chapter 18

Announcements
• HW05 available, due Thursday, October 24th

(at 11.59pm)
– The project is structured as tasks, not files

(one task may touch multiple files)
• Tasks 0-4 can be done already
• Tasks 5-6 can be done after class today

Review: Widget Layout

Building blocks of GUI applications
see simpleWidget.ml in GUI Demo Code project

Gctx.ml

Widget Layout
• Widgets are “things drawn on the screen”. How to make them

location independent?
• Idea: Use a graphics context to make drawing relative to the

widget’s current position

Paint.ml

Native
graphics
library

GUI
Library

Application

Widget.ml

OCaml’s Graphics Module (graphics.cma)

Eventloop.ml
The graphics
context
isolates the
Widgets
module from
the Graphics
module.

Simple Widgets

• You can ask a simple widget to repaint itself
• You can ask a simple widget to tell you its size
• (We'll talk about handling events later)

• Repainting is relative to a graphics context

(* An interface for simple GUI widgets *)
type widget = {
 repaint : Gctx.gctx -> unit;
 size : unit -> (int * int)
}
val label : string -> widget
val space : int * int -> widget
val border : widget -> widget
val hpair : widget -> widget -> widget
val canvas : int * int -> (Gctx.gctx -> unit) -> widget

simpleWidget.mli

Widget Hierarchy Pictorially
(* Create some simple label widgets *)
let l1 = label "Hello"
let l2 = label "World"
(* Compose them horizontally, adding some borders *)
let h = border (hpair (border l1)
 (hpair (space (10,10)) (border l2)))

Hello World

On the screen

border

hpair

border

label

hpair

space border

labelWidget tree

swdemo.ml

Coding with Simple Widgets

see swdemo.ml

"lightbulb" demo

Clicking here
makes the “lightbulb” turn on
and changes label text

Clicking again
makes it turn back off

Do you know how you would use the
(simple) widget library to define the layout
of this lightbulb application?

1. I'm not sure how to start.

2. I may have it, but I'm not sure.

3. Sure! No problem.

(* An interface for simple GUI widgets *)
type widget = {
 repaint : Gctx.gctx -> unit;
 size : unit -> (int * int)
}
val label : string -> widget
val space : int * int -> widget
val border : widget -> widget
val hpair : widget -> widget -> widget
val canvas : int * int -> (Gctx.gctx -> unit) -> widget

"lightbulb" demo layout

canvas,
with
border

label, with borderspace

let onoff = border (label "ON")

let paint_bulb (g: Gctx.gctx) : unit = …

let bulb = border (canvas (100, 100) paint_bulb)

let top : widget = hpair bulb (hpair (space (20, 20)) onoff)

swdemo.ml

Events and Event Handling

Gctx

Project Architecture

Paint

Native
graphics
library

GUI
Library

Application

Widget

OCaml’s Graphics Module (graphics.cma)

Eventloop

Event loop with event handling

let run (w:widget) : unit =
 let g = Gctx.top_level in …create the initial gctx…
 w.repaint g; …display the widget
 Graphics.loop …wait for user input
 (fun e ->
 clear_graph ();
 w.handle g e; …inform widget about the event…
 w.repaint g) …update the widget's appearance… Eventloop

let rec loop (f: event -> unit) : unit =
 let e = wait_next_event () in
 f e;
 loop f Graphics

Events

type event

val wait_for_event : unit -> event

type event_type =
 | KeyPress of char (* User pressed a key *)
 | MouseDown (* Mouse Button pressed, no movement *)
 | MouseUp (* Mouse button released, no movement *)
 | MouseMove (* Mouse moved with button up *)
 | MouseDrag (* Mouse moved with button down *)

val event_type : event -> event_type
val event_pos : event -> gctx -> position

gctx.mli

Remember:
The graphics context translates the location of the event to widget-local coordinates

Reactive Widgets

• Widgets now have a “method” for handling events
• The eventloop waits for an event and then gives it to the root widget
• The widgets forward the event down the tree, according to the

position of the event

type widget = {
 repaint : Gctx.gctx -> unit;
 size : unit -> Gctx.dimension;
handle : Gctx.gctx -> Gctx.event -> unit

}

widget.mli

Event-handling: Containers

border

hpair

border

label

hpair

space border

label

Widget tree

Hello World

On the screen

User clicks,
generating

event e
.handle g e

.handle g1 e

.handle g2 e

.handle g3 e

.handle g4 e

Container widgets propagate events to their children:

g1 = Gctx.translate g (2,2)
g2 = Gctx.translate g1 (hello_width,0)
g3 = Gctx.translate g2 (space_width,0)
g4 = Gctx.translate g3 (2,2)

Routing events
through container widgets

Event Handling: Routing
• When a container widget handles an event, it passes the event to the

appropriate child

• The Gctx.gctx must be translated so that the child can interpret the event
in its own local coordinates.

let border (w:widget):widget =
 { repaint = …;
 size = …;

handle = (fun (g:Gctx.gctx) (e:Gctx.event) ->
w.handle (Gctx.translate g (2,2)) e);

 }

widget.ml

Consider routing an event through an hpair widget
constructed by:

The event will always be propagated either to w1 or w2.

1. True

2. False

let hp = hpair w1 w2

Answer: False

Routing events through hpair widgets

• There are three cases for routing in an hpair.
• An event in the “empty area” should not be sent to either w1

or w2.

w1

w2

h’s width

h’s
height

Drop this
event

Route to
w1

Route to
w2

Routing events through hpair widgets
• The event handler of an hpair must check to see whether the event should

be handled by the left or right widget.
– Check the event’s coordinates against the size of the left widget
– If the event is within the left widget, let it handle the event
– Otherwise check the event’s coordinates against the right child’s
– If the right child gets the event, don’t forget to translate its coordinates

handle =
 (fun (g:Gctx.gctx) (e:Gctx.event) ->
 if event_within g e (w1.size ())
 then w1.handle g e
 else
 let g = (Gctx.translate g (fst (w1.size ()), 0)) in
 if event_within g e (w2.size ())
 then w2.handle g e
 else ())

Stateful Widgets

How can widgets react to events?

A plain (stateless) label widget

35

let label (s:string) : widget =
{
 repaint = (fun (g:Gctx.gctx) -> Gctx.draw_string g (0,0) s);
 handle = (fun _ _ -> ());
 size = (fun () -> Gctx.text_size s)
}

A stateful label Widget

• The label object can make its string mutable. The “methods” can refer to
this mutable string.

• But how can we change this string in response to an event?

• (r is "local" state accessible only by repaint/size funs --- see Ch. 17)

let label (s: string) : widget =
 let r = { contents = s } in
 { repaint = (fun (g: Gctx.gctx) ->
 Gctx.draw_string g (0,0) r.contents);
 handle = (fun _ _ -> ());
 size = (fun () -> Gctx.text_size r.contents)
 }

first stab at a
v

A stateful label Widget

• A controller gives access to the shared state.
– Here, the label_controller object returned by label provides a way to

set and get the label string

type label_controller = { set_label: string -> unit;
 get_label: unit -> string }

let label (s: string) : widget * label_controller =
 let r = { contents = s } in
 ({ repaint = (fun (g: Gctx.gctx) ->
 Gctx.draw_string g (0,0) r.contents);
 handle = (fun _ _ -> ());
 size = (fun () -> Gctx.text_size r.contents)
 }
 ,

{ set_label = (fun (s: string) -> r.contents <- s);
get_label = (fun () -> r.contents);

}
)

widget.ml

DEMO: NOTIFIER

notifierdemo.ml — increasingly sophisticated approaches to event
handling

Event Listeners

See notifierdemo.ml
(distributed with the lecture demos in Codio)

Handling multiple event types
• Problem: Widgets may want to react to many different events
• Example: Button

– mouseclick: activates the button, primary reaction
– mouse movement: tooltip?
– key press: keyboard access to the button functionality?

• These reactions should be independent
– Each event handled by a different event listener (i.e. first-class function)
– Widgets may have several listeners to handle a triggered event
– Listeners react in sequence; all are notified about the event

• Many different kinds of widgets react to events
– Don't want to repeat the code for buttons in other widgets in the library

• Solution: notifier!

Analogy: Handling multiple event types
• Problem: Imagine a photo/video sharing app where you want

to react to when your friend shares a new post

• Option 1 – Manual (Terrible idea!)
– Keep refreshing the page every minute to see if there’s new content
– Wasteful!

• Option 2 – Push Notifications
– You can sign up to be notified when there is new content
– Other people can sign up for the same notification too
– If there is new content, you might “react” in a different way depending

on the content – if it’s a picture, you want to reshare it; if it’s a video,
you want to comment on it; ...

– Your (and other people’s reactions) should be independent!

Analogy: Listeners and Notifiers Pictorially

App Notifier

Famous “influencer”

Notify me

:: :: :: []

Maintains list of listeners

Notify me

Notify me
New Post Notify!

Listeners

Event
(generator)

notifier
controller

listeners

Listeners and Notifiers Pictorially

border

hpair

border

label

hpair

space border

labelWidget tree

Hello World

On the screen

notifier l1 :: l2 :: l3 :: []

User clicks,
generating

event e

Notifiers
• A notifier is a container widget that adds event listeners to a

node in the widget hierarchy
– Note: this way of structuring event listeners is based on Java’s Swing

Library design (we use Swing terminology).

• Event listeners “eavesdrop” on the events flowing through the
notifier
– The event listeners are stored in a list
– They react in order
– Then the event is passed down to the child widget

• Event listeners can be added by using a notifier_controller

Listeners

type event_listener = Gctx.gctx -> Gctx.event -> unit

(* Performs an action upon receiving a mouse click. *)
let mouseclick_listener (action: unit -> unit)
 : event_listener =
 fun (g:Gctx.gctx) (e: Gctx.event) ->
 if Gctx.event_type e = Gctx.MouseDown
 then action ()

widget.ml

type widget = {
 repaint : Gctx.gctx -> unit;
 size : unit -> Gctx.dimension;

handle : Gctx.gctx -> Gctx.event -> unit
}

widget.mli

Note: the type event_listener is
the type of the handle method from
the widget type.

Notifiers and Notifier Controllers
type notifier_controller =
 { add_listener : event_listener -> unit }

let notifier (w: widget) : widget * notifier_controller =
 let listeners = { contents = [] } in
 { repaint = w.repaint;
 size = w.size
 handle =
 (fun (g: Gctx.gctx) (e: Gctx.event) ->
 List.iter (fun h -> h g e) listeners.contents;
 w.handle g e);
},
 { add_event_listener =
 fun (newl: event_listener) ->
 listeners.contents <-
 newl :: listeners.contents
 }

Loop through the list
of listeners, allowing
each one to process
the event. Then pass
the event to the child.

The notifier_controller allows
new listeners to be added to
the list.

widget.ml

Buttons (at last!)

• A button widget is just a label wrapped in a notifier
• Add a mouseclick_listener to the button using the

notifier_controller
• (For aesthetic purposes, we could also put a border around

the label widget.)

(* A text button *)
let button (s: string) : widget
 * label_controller
 * notifier_controller =
 let (w, lc) = label s in
 let (w', nc) = notifier w in
 (w', lc, nc)

widget.ml

47

Event Handling Summary
• An event is a signal

– e.g., a mouse click or release, mouse motion, or keypress
– Events carry data, such as e.g., state of the mouse button, the coordinates of the mouse, the

key pressed

• An event can be handled by some widget
– The top-level loop waits for an event and then gives it to the root widget
– The widgets forward the event down the tree
– e.g., a button handles a mouse click event

• Typically, the widget that handles an event updates some state of the GUI
– e.g., to record whether the light is on and change the label of the button
– state is usual updated via a controller, e.g., a label_controller

• A listener associates an action with a particular type of event
– e.g., a mouseclick_listener does something on a mouse click
– listeners are triggered when a notifier widget handles an event

• User sees the reaction to the event when the GUI repaint itself
– e.g., button has new label, canvas is a new color

DEMO: ONOFF

onoff.ml — changing state on a button click

True or False: One can use a notifier and label to
create a button that toggles the states of two separate
lightbulb canvases.

Answer: True

