
Programming Languages
and Techniques

(CIS1200)

Lecture 22

Java: Objects, Interfaces
Chapters 19 & 20

Announcements
• HW05: GUI programming
– Due: tomorrow at 11.59pm

• Java Bootcamp / Refresher: Sunday, October 27
– 1-3pm, Towne 100
– Will be recorded
– Look for more details on Ed

• HW06: Pennstagram
– Java array programming
– Available soon
– Due Thursday, October 31st at 11.59pm

2

Review: Java Core Language

differences between OCaml and Java

Types
• As in OCaml, every Java expression has a type
• The type describes the value that an expression computes

Expression form Example Type

Variable reference x Declared type of variable

Object creation new Counter () Class of the object

Method call c.inc() Return type of method

Equality test x == y boolean

Assignment x = 5 don’t use as an expression!!

7

Type System Organization

OCaml Java

primitive types
(values stored
“directly” in the
stack)

int, float, char, bool, … int, float, double, char, boolean,
…

structured types
(a.k.a. reference
types — values
stored in the heap)

tuples, datatypes, records,
functions, arrays

(objects encoded as records
of functions)

objects, arrays

(records, tuples, datatypes,
strings, first-class functions are
special cases of objects)

generics ‘a list List<A>

abstract types module types (signatures) interfaces, abstract classes,
public/private modifiers

8

Arithmetic & Logical Operators

OCaml Java

=, == == equality test
<>, != != inequality
>, >=, <, <= >, >=, <, <= comparisons
+ + addition
^ + string concatenation
- - subtraction (and unary minus)
* * multiplication
/ / division
mod % remainder (modulus)
not ! logical “not”
&& && logical “and” (short-circuiting)
|| || logical “or” (short-circuiting)

9

Java: Operator Overloading

• The meaning of an operator in Java is determined by the
types of the values it operates on:
– Integer division

4/3 ⇒ 1

– Floating point division
4.0/3.0 ⇒ 1.3333333333333333

– Automatic conversion from int to float
4/3.0 ⇒ 1.3333333333333333

• Method overloading is a general mechanism in Java
– we’ll see more of it later

10

Equality
• like OCaml, Java has two ways of testing reference types for

equality:
– “reference equality”

o1 == o2
– “deep equality”

o1.equals(o2)

• Normally, you should use == to compare primitive types and
“.equals” to compare objects

• Careful: Single-equals (=) means assignment, not equality
comparison

every object provides an “equals”
method that should “do the right
thing” depending on the class of
the object

12

Strings
• String is a built in Java class
• Strings are sequences of (unicode) characters
 "" "Java" "3 Stooges" "富士山"
• + means String concatenation (overloaded)

"3" + " " + "Stooges" Þ "3 Stooges"
• Text in a String is immutable (like OCaml)

– but variables that store strings are not
– String x = "OCaml";
– String y = x;
– Immutability: can't do anything to x so that y changes

• The .equals method returns true when two strings
contain the same sequence of characters

13

Aside: StringBuffers
• StringBuffer is a mutable Java String
• Alternative to "+" when constructing large strings

StringBuffer sb = new StringBuffer("Hello");
for (int i=0; i<200; i++) {
 sb.append("!"); // modify end of sb
}
String s = sb.toString(); // convert back to String

String s = "Hello";
for (int i=0; i<200; i++) {
 s = s + "!";
}

14

What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x = "CIS 1200";
String z = "CIS 1200" ;
boolean ans = x.equals(z);

Answer: true
This is the preferred method of comparing strings!

16

What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x1 = "CIS ";
String x2 = "1200";
String x = x1 + x2;
String z = "CIS 1200";
boolean ans = (x == z);

Answer: false
Even though x and z both contain the characters “CIS 1200”,
they are stored in two different locations in the heap.

18

What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x = "CIS 1200";
String z = "CIS 1200";
boolean ans = (x == z);

Answer: true(!)
Why? Since strings are immutable, two identical
strings that are known when the program is compiled can be
aliased by the compiler (to save space).

20

Moral

Always use s1.equals(s2) to
compare Strings!

Compare strings with respect to their
content, not where they happen to be
allocated in memory…

21

Object Oriented Programming

Preview: The OO Style
• Core ideas:

– objects (state encapsulated with operations)
– dynamic dispatch (“receiver” of method

call determines behavior)
– classes (“templates” for object creation)
– subtyping (grouping object types

by common functionality)
– inheritance (creating new classes from existing ones)

• Good for:
– GUIs

• complex software systems that include many different
implementations of the same “interface” (set of operations)
with different behaviors

– Simulations
• designs with an explicit correspondence between “objects” in the computer

and things in the real world
– Games

encapsulated
state

23

"Objects" in OCaml

(* The type of counter objects *)
type counter = {
 inc : unit -> int;
 dec : unit -> int;
}

(* Create a counter “object” *)
let new_counter () : counter =
 let r = {contents = 0} in
 {
 inc = (fun () ->
 r.contents <- r.contents + 1;
 r.contents);
 dec = (fun () ->
 r.contents <- r.contents - 1;
 r.contents)
 }

Why is this an object?

§ Encapsulated local state
only visible to the methods
of the object

§ Object is defined by what it
can do—local state does not
appear in the interface

§ There is a way to construct
new object values that
behave similarly

24

OO terminology
• Object: a structured collection of encapsulated fields

(aka instance variables) and methods
• Class: a template for creating objects
• The class of an object specifies…
– the types and initial values of its local state (fields)
– the set of operations that can be performed on the object

(methods)
– one or more constructors: create new objects by (1)

allocating heap space, and (2) running code to initialize the
object (optional, but default provided)

• Every (Java) object is an instance of some class
– Instances are created by invoking a constructor with the
new keyword

25

OO programming

(and C, C++, C#)

• Primitive notion of object
creation (classes, with fields,
methods and constructors)

• Flexibility through extension:
Subtyping allows related
objects to share a common
interface

(part we've seen)

• Explicitly create objects using
a record of higher order
functions and hidden state

• Flexibility through
composition: objects can only
implement one interface

type button =
 widget *
 label_controller *
 notifier_controller

class Button extends Widget {
 /* Button is a subtype
 of Widget */

}
26

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

 public int dec () {
 r = r - 1;
 return r;
 }
}

Objects in Java

field /
instance variable

constructor

methods

class name
class declaration

public class Main {

 public static void
 main (String[] args) {

 Counter c = new Counter();

 System.out.println(c.inc());

 }
}

constructor
invocation

method call

object creation and use

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

 public int dec () {
 r = r - 1;
 return r;
 }
}

Encapsulating local state

constructor and
methods can
refer to r

public class Main {

 public static void
 main (String[] args) {

 Counter c = new Counter();

 System.out.println(c.inc());

 }
}

method call

other parts of the
program can only access
public members

r is private

Encapsulating local state
• Visibility modifiers make the state local by

controlling access
• Two levels of visibility*:
– public : accessible from anywhere in the program
– private : only accessible inside the class

• Design pattern — first cut:
– Make all fields private
– Make constructors and (non-helper) methods public

 *Java offers a couple of other protection levels — “protected” and “package protected”.

These are not important at this point.

public class Counter {

 private int r;

 public Counter (int r0) {
 r = r0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

 public int dec () {
 r = r - 1;
 return r;
 }
}

Constructors with Parameters

public class Main {

 public static void
 main (String[] args) {

 Counter c = new Counter(3);

 System.out.println(c.inc());

 }
}

constructor
invocation

Constructor methods can take
parameters

object creation and use

Constructor must have the same
name as the class

• Declare a variable to hold a Counter object
– Type of the object is the name of the class that creates it

• Invoke the constructor for Counter to create a Counter
instance with keyword "new" and store it in the variable

Counter c = new Counter();

Creating Objects

Creating Objects
• Every Java variable is mutable

Counter c = new Counter(2);
c = new Counter(4);

Counter c = null;

☞ Single = for assignment
 Double == for reference equality testing

• A Java variable of reference type can also contain the special
value “null”

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. Program raises

NullPointerException

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

}

Counter x;
x.inc();
int ans = x.inc();

Answer: Program raises NullPointerException

What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. Program raises

NullPointerException

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

}

Counter x = new Counter();
x.inc();
Counter y = x;
y.inc();
int ans = x.inc();

Answer: 3

Interfaces

Working with objects abstractly

“Objects” in OCaml vs. Java
(* The type of “objects” *)
type point = {
 getX : unit -> int;
 getY : unit -> int;
 move : int*int -> unit;
}

(* Create an "object" with
 hidden state: *)
type position =
 { mutable x: int;
 mutable y: int; }

let new_point () : point =
 let r = {x = 0; y=0} in {
 getX = (fun () -> r.x);
 getY = (fun () -> r.y);
 move = (fun (dx,dy) ->
 r.x <- r.x + dx;
 r.y <- r.y + dy)
}

public class Point {

 private int x;
 private int y;

 public Point () {
 x = 0;
 y = 0;
 }
 public int getX () {
 return x;
 }
 public int getY () {
 return y;
 }
 public void move
 (int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }
}

Type is separate
from the implementation

Class specifies both type and
implementation of object values

O
Ca

m
l

Ja
va

Interfaces
• Give a type for an object based on how it can be

used, not on how it was constructed
• Describe a contract that objects must satisfy
• Example: Interface for objects that have a position

and can be moved

public interface Displaceable {
 int getX();
 int getY();
 void move(int dx, int dy);
}

No fields, no constructors, no
method bodies!

public class Point implements Displaceable {
 private int x, y;
 public Point(int x0, int y0) {
 x = x0;
 y = y0;
 }
 public int getX() { return x; }
 public int getY() { return y; }
 public void move(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }
}

Implementing the interface
• A class that implements an interface provides appropriate

definitions for the methods specified in the interface
• The class fulfills the contract implicit in the interface

methods
required to
satisfy contract

interfaces
implemented

Another implementation

public class Circle implements Displaceable {
 private Point center;
 private int radius;
 public Circle(Point initCenter, int initRadius) {
 center = initCenter;
 radius = initRadius;
 }
 public int getX() { return center.getX(); }
 public int getY() { return center.getY(); }
 public void move(int dx, int dy) {
 center.move(dx, dy);
 }
} Delegation: move the

circle by moving the
center

Objects with different
local state can satisfy
the same interface

Yet another implementation

public class ColoredPoint implements Displaceable {
 private Point p;
 private Color c;
 public ColoredPoint (int x0, int y0, Color c0) {
 p = new Point(x0,y0);
 c = c0;
 }
 public void move(int dx, int dy) {
 p.move(dx, dy);
 }
 public int getX() { return p.getX(); }

 public int getY() { return p.getY(); }

 public Color getColor() { return c; }
}

Flexibility: Classes
may contain more
methods than
interface requires

Interfaces are types
• Can declare variables and method params with

interface type

• Can call m with any Displaceable argument…

• ... but m can only operate on d according to the
interface

void m (Displaceable d) { … }

obj.m(new Point(3,4));
obj.m(new ColoredPoint(1,2,Color.Black));

d.move(-1,1);
…
… d.getX() … ⇒ 0
… d.getY() … ⇒ 3

Using interface types
• Variables with interface types can refer, at run time, to objects

of any class that implements the interface
• Point and Circle are subtypes of Displaceable

Displaceable d0, d1, d2;
d0 = new Point(1, 2);
d1 = new Circle(new Point(2,3), 1);
d2 = new ColoredPoint(-1,1, red);
d0.move(-2,0);
d1.move(-2,0);
d2.move(-2,0);
…
… d0.getX() … ⇒ -1
… d1.getX() … ⇒ 0
… d2.getX() … ⇒ -3

The class that created the
object value determines
which move code is executed:
dynamic dispatch

i.e., run-time

Abstraction
The Displaceable interface gives us a single name for all the
possible kinds of “moveable things.” This allows us to write code
that manipulates arbitrary Displaceable objects, without caring
whether it’s dealing with points or circles.
public class DoStuff {
 public void moveItALot (Displaceable s) {
 s.move(3,3);
 s.move(100,1000);
 s.move(1000,234651);
 }

 public void dostuff () {
 Displaceable s1 = new Point(5,5);
 Displaceable s2 = new Circle(new Point(0,0),100);
 moveItALot(s1);
 moveItALot(s2);
 }
}

Multiple interfaces
• An interface represents a point of view
 …and there can be multiple valid points of view on a

given object

• Example: Geometric objects
– All can move (are Displaceable)
– Some have Color (are Colored)

Colored interface

• Contract for objects that that have a color
– Circles and Points don’t implement Colored
– ColoredPoints do

public interface Colored {
 public Color getColor();
}

ColoredPoints

public class ColoredPoint
 implements Displaceable, Colored {

 … // previous members

 private Color color;
 public Color getColor() {
 return color;
 }

 …
}

“Datatypes” in Java

type shape =
 | Point of …
 | Circle of …

let draw_shape (s:shape) =
 begin match s with
 | Point … -> …
 | Circle … -> …
 end

interface Shape {
 void draw();
}

class Point implements Shape {
 …
 public void draw() {
 …
 }
}

class Circle implements Shape {
 …
 public void draw() {
 …
 }
}

OCaml Java

Recap
• Object: A collection of related fields (or instance variables)

and methods that operate on those fields
• Class: A template for creating objects, specifying

– types and initial values of fields
– code for methods

– optionally, a constructor that is run each time a new object is
created from the class

• Interface: A “signature” for objects, describing a collection of
methods that must be provided by classes that implement the
interface

• Object Type: Either a class or an interface (meaning “this
object was created from a class that implements this
interface”)

Static Methods

Java Main Entry Point

• Program starts running at main
– args is an array of Strings (passed in from the command line)
– must be public
– returns void (i.e. is a command)

• What does static mean?

class MainClass {

 public static void main (String[] args) {
 …
 }

}

Static method example
public class Max {

 public static int max (int x, int y) {
 if (x > y) {
 return x;
 } else {
 return y;
 }
 }

 public static int max3(int x, int y, int z) {
 return max(max(x,y), z);
 }
} public class Main {

 public static void main (String[] args) {

 System.out.println(Max.max(3,4));
 return;
 }
}

closest analogue of top-level
functions in OCaml, but
must be a member of some class

Internally (within the
same class), call with just
the method name

Externally, prefix with
name of the class

main method must be
static; it is invoked to
start the program running

mantra

Static = Decided at Compile Time
Dynamic = Decided at Run Time

javac

Main.java

Main.class

CPU + memory

java (jre)
machine language

ocamlc

main.ml

CPU + memory
machine language

main.exe

source code

compiler

runtime
system*

processor

compile
time

run time

*simplified (e.g., omitting the OS)

Static vs. Dynamic Methods
• Static methods are independent of object values

– Similar to OCaml functions
– Cannot refer to the local state of objects (fields or normal methods)

• Use static methods for:
– Non-OO programming
– Programming with primitive types: Math.sin(60), Integer.toString(3),

Boolean.valueOf(“true”)
– “public static void main”

• “Normal” methods are dynamic
– Need access to the local state of the particular object on which they

are invoked
– We only know at runtime which method will get called

void moveTwice (Displaceable o) {
 o.move (1,1); o.move(1,1);
}

Method call examples
• Calling a (dynamic) method of an object (o) that returns a number:

• Calling a static method of a class (C) that returns a number:

• Calling a method that returns void:

• Calling a static or dynamic method in a method of the same class:

• Calling (dynamic) methods that return objects:

o.m();

x = o.m() + 5;

x = o.m().n();
x = o.m().n().x().y().z().a().b().c().d().e();

m();

C.m();

x = C.m() + 5;

Static Dynamic

this.m();C.m();Static DynamicEither

Which static method can we add to this class?

public class Counter {

 private int r;

 public Counter () {
 r = 0;
 }

 public int inc () {
 r = r + 1;
 return r;
 }

 // A,B, or C here ?

}

public static int dec () {
 r = r – 1;
 return r;
}

Answer: C

public static int inc2 () {
 inc();
 return inc();
}

public static int getInitialVal () {
 return 0;
}

A.

B.

C.

Static Fields

Static vs. Dynamic Class Members
public class FancyCounter {
 private int c = 0;
 private static int total = 0;

 public int inc () {
 c += 1;
 total += 1;
 return c;
 }

 public static int getTotal () {
 return total;
 }
}

FancyCounter c1 = new FancyCounter();
FancyCounter c2 = new FancyCounter();
int v1 = c1.inc();
int v2 = c2.inc();
int v3 = c1.getTotal();
System.out.println(v1 + " " + v2 + " " + v3);

Static Class Members
• Static methods can depend only on other static things

– Static fields and methods, from the same or other classes

• Static methods can create new objects and use them
– This is typically how main works

• public static fields are the "global" state of the program
– Mutable global state should generally be avoided
– Immutable global fields are useful for constants

public static final double PI = 3.14159265359793238462643383279;

Style: naming conventions

• Identifiers consist of alphanumeric characters and _ and cannot
start with a digit

• The larger the scope, the more informative the name should be
• Conventions are important: variables, methods and classes can

have the same name

Kind Part-of-
speech

Example

class noun RacingCar
field / variable noun initialSpeed
static final field
(constants)

noun MILES_PER_GALLON

method verb shiftGear

Why naming conventions matter
public class Turtle {
 private Turtle Turtle;
 public Turtle() { }

 public Turtle Turtle (Turtle Turtle) {
 return Turtle;
 }
}

Many more details on good Java style here:
http://www.seas.upenn.edu/~cis1200/current/java_style.shtml

Java Arrays

Working with static methods

Java Arrays: Indexing

• An array is a sequentially ordered collection of values
that can be indexed in constant time

• Index elements from 0

• Basic array expression forms
 a[i] access element of array a at index i
 a[i] = e assign e to element of array a at index i
 a.length get the number of elements in a

Java Arrays: Creation
• Create an array a of size n with elements of type C, initialized

with default values

• Create an array with given initial values

• When initializing a variable can omit new keyword and type

C[] a = new C[n];

C[] a = { new C(1), new C(2) };

C[] a = new C[] { new C(1), new C(2) };

Java Arrays: Java ASM
• Arrays live in the heap; values with array type are

mutable references

int[] a = new int[4];
a[2] = 7;

Stack Heap

a int[]
length 4

0 0 7 0

length is a final
(immutable) field

Array entries
are mutable

Java Arrays: Aliasing
• Variables of array type are references and can be aliases

int[] a = new int[4];
int[] b = a;
a[2] = 7;
int ans = b[2];

Stack Heap

int[]
length 4

0 0 0 0

a

b
7

