Programming Languages
and Techniques
(C1S1200)

Lecture 23

Static Methods, Java Arrays
Chapters 20, 21

Announcements

* Java Bootcamp / Refresher: Sunday, October 27
— 1-3pm, Towne 100
— Will be recorded
— Look for more details on Ed

* HWO06: Pennstagram
— Java array programming

— Available soon
— Due Thursday, October 31t at 11.59pm

Recap

Object: A collection of related fields (or instance variables)
and methods that operate on those fields

Class: A template for creating objects, specifying
— types and initial values of fields
— code for methods

— optionally, a constructor that is run each time a new object is
created from the class

Interface: A “signature” for objects, describing a collection of
methods that must be provided by classes that implement the
interface

Object Type: Either a class or an interface (meaning “this
object was created from a class that implements this
interface”)

Java Main Entry Point

class MainClass {

public static void main (String[] args) {

h

}

* Program starts running at main
— argsis an array of Strings (passed in from the command line)
— must be public
— returns vold (i.e.is a command)

e What does static mean?

Static method example

public class Max { closest analogue of top-level

public|static int max (int x, int y) { functions in OCaml, but
must be a member of some class

if (X > y)
return Xx;
} else {
return y,
¥

}

public static int max3(int x, int y, int z) {
return max(max(x,y), z),

]
} public class Main {

Internally (within the

same class), call with just public static void main (String[] args) {

th h .
e method name System.out.printin(Max.max(3,4));

main method must be return;

static; itisinvokedto] 1 } EXtema}L'V,hpreIﬁX with

start the program running name of the class

mantra

Static = Decided at Compile Time
Dynamic = Decided at Run Time

—

source code

/ \ / \ compiler | compile
time
Main.class

main.exe _ .
IEVCRILG) runtime
system* - :
machine language machine language Y run time
CPU + memory CPU + memory processor

*simplified (e.g., omitting the OS)

Static vs. Dynamic Methods

e Static methods are independent of object values
— Similar to OCaml functions
— Cannot refer to the local state of objects (fields or normal methods)

* Use static methods for:
— Non-0O0 programming
— Programming with primitive types: Math.sin(60), Integer.toString(3),
Boolean.valueOf(“true”)
— “public static void main”

I”

* “Normal” methods are dynamic

— Need access to the local state of the particular object on which they
are invoked

— We only know at runtime which method will get called

void moveTwice (Displaceable o) {
o.move (1,1); o.move(l,1);
}

Method call examples

Calling a (dynamic) method of an object (o) that returns a number:

x =o0.m() + 5;

Calling a static method of a class (C) that returns a number:

x = C.mQ + 5;

Calling a method that returns void:

Static | C.m(Q); Dynamic | 0.m();

Calling a static or dynamic method in a method of the same class:

Either mQ); Static C.mQ); Dynamic this.m(Q);

Calling (dynamic) methods that return objects:

o.m().nQ);
0.m().nQ.xO).y(D.z().a().b().c).d().eQ;

X
X

“n

23: Which static method can we add to this class?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0

0%

0%

0%

Which static method can we add to this class?

public class Counter {
private int r;

public Counter (O {
r = 0;
¥

public int inc O {
r=r+1;
return r;

¥
// A,B, or C here ?

}

public static int dec () {
r=r - 1;
return r;

public static int inc2 () {
incQ;

return inc();

}

public static int getInitialVal () {
return 0;
¥

Answer: C

Static vs. Dynamic Class Members

public class FancyCounter {

}

private int c = 0;
private static int total = 0;

public int i1nc OO {
c += 1;
total += 1;
return c;

h

public static int getTotal () {
return total;
h

FancyCounter cl
FancyCounter cZ

int vl = cl.1nc(Q);
int vZ2 = c2.1nc(Q);
int v3 =

new FancyCounter();
new FancyCounter();

cl.getTotal();
System.out.println(vl +

+ V2 +

+ v3);

Static Class Members

* Static methods can depend only on other static things
— Static fields and methods, from the same or other classes

* Static methods can create new objects and use them
— This is typically how main works

« public static fields are the "global" state of the program
— Mutable global state should generally be avoided
— Immutable global fields are useful for constants

public static final double PI = 3.14159265359793238462643383279;

Style: naming conventions

Kind Part-of- FEY]E
speech
interface adjective Runnable
class noun RacingCar
field / variable noun initialSpeed
static final field noun MILES_PER_GALLON
(constants)
method verb shiftGear

Identifiers consist of alphanumeric characters and _ and cannot

start with a digit

The larger the scope, the more informative the name should be
Conventions are important: variables, methods and classes can

have the same name

Why naming conventions matter

public class Turtle {
private Turtle Turtle;
public Turtle() { }

public Turtle Turtle (Turtle Turtle) {
return Turtle;

¥
¥

Many more details on good Java style here:
http://www.seas.upenn.edu/~cis1200/current/java_style

Working with static methods

Java Arrays: Indexing

* An array is a sequentially ordered collection of values
that can be indexed in constant time
* Index elements from O

Element
First index (at index 8)
0] 1 2 3 4 5 6 7\3 9 — Indices
L
<4—Array length is 10 >

 Basic array expression forms
al[1] access element of array d at index 1
a[i] = e assign e to element of array d at index 1
a.length get the number of elementsin a

Java Arrays: Creation

Create an array a of size n with elements of type C, initialized
with default values

C[] a = new C[n];

Create an array with given initial values

C[] a = new C[] { new C(1), new C(2) };

When initializing a variable can omit new keyword and type

C[] a = { new C(1), new C(2) };

Java Arrays: Java ASM

* Arrays live in the heap; values with array type are

mutable references

int[] a = new int[4];

al2] =7,
Stack Heap
e SN
length | 4
Array entries) ’ﬁ” 710

are mutable

length is a final
(immutable) field

Java Arrays: Aliasing

* Variables of array type are references and can be aliases

int[] a = new 1nt[4];
int[] b = a;
al2] = 7;

int ans = b[2];

Stack Heap
a j/_\ int[]

length | 4
» 00|70

“m

23: What is the value of ans at the end of this program?

0

NullPointerException

ArraylndexOutOfBoundsException

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

What is the value of ans at the end of this program?

int[] a = {1, 2, 3, 4};
int ans = ala.length];

H~wnN R

. NullPointerException
. ArrayIndexOutOfBoundsException

oOoultphWN PR

Answer: ArraylndexOutOfBoundsException

“m

23: What is the value of ans at the end of this program?

0

NullPointerException

ArraylndexOutOfBoundsException

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

What is the value of ans at the end of this program?

int[] a = null;
int ans = a.length;

SOQWMN -

. NullPointerException
. ArrayIndexOutOfBoundsException

oOoultphWN PR

Answer: NullPointerException

“m

23: What is the value of ans at the end of this program?

0

NullPointerException

ArraylndexOutOfBoundsException

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

What is the value of ans at the end of this program?

i};
a.length;

int[] a
int ans

SOQWMN -

. NullPointerException
. ArrayIndexOutOfBoundsException

oOoultphWN PR

Answer: O

“m

23: What is the value of ans at the end of this program?

0

NullPointerException

ArraylndexOutOfBoundsException

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

What is the value of ans at the end of this program?

int[] a = {1, 2, 3, 4};
int[] b = a;
b[@] = 0;

int ans = a[0];

SOQWMN -

. NullPointerException
. ArrayIndexOutOfBoundsException

oOoultphWN PR

Answer: O

For loops

initialization loop condition update

for (int 1 = 0; 1 < a.length; 1++) {
total += a[1];
¥

loop body

static 1nt sum(Cint[] a) {
int total = 0;
for (int 1 = 0; 1 < a.length; 1++) {
total += a[1i];
Iy

return total;

General pattern for computing info about an array

For-each loops

arra
§|er|nentl y Note that this is "just" iteration —
eclaration no access to the array index!
for (int x : a) {
total += x; loop body

¥

static 1nt sum(int[] a) {
int total = 0;
for (int x : a) {
total += x;
Iy

return total;

Access all array elements in sequence

Array Copy and Equality

« Use System.arraycopy to copy arrays
« Use Arrays.equals to compare arrays structurally

int[] a
int[] b
int[] c
System.

System.
System.
System.
System.
System.
System.

{1, 2, 3}
a:

Copy data from array a to
array c, starting at position

new int[a.length]; 0 in a and at position 0 in c.
arraycopy(a,?,c,0,a.length); FEaERERENEERERS
out.printlnCa == b); // true
out.printlnCa == c); // false
out.println(Ca.equals(b)); // true
out.println(Ca.equals(c)); // false
out.println(Arrays. equals(a,b)); // true
out.println(Arrays. equals(a,c)); // true

Multidimensional Arrays

Multi-Dimensional Arrays

A 2-d array is just an array of arrays...

String[1[] names = {{"™Mr. ", "Mrs. ", "Ms. "},
{"Smith", "Jones"}};

System. out.printlnCnames[0][?] + names[1][?]);
// --> Mr. Smith
System. out.printlnCnames[0][2] + names[1][1]);
// --> Ms. Jones

String[][] justmeans (String[])[]
names[1][1] justmeans (names[1])[1]

More brackets > more dimensions

Multi-Dimensional Arrays

int[][] products = new int[5][];
for (int col = 0; col < 5; col++) {
products[col] = new int[col + 1];
for (int row = 0; row <= col; row++) {
products[col][row] = col * row;
ks

What would a “Java ASM”
stack and heap look like
after running this program?

Multi-Dimensional Arrays

int[][] products
for (int col = 0;
products[col]
for (int row

= new 1nt[5][];
col < 5; col++) {
= new int[fcol + 1];
= 0; row <= col; row++)

products[col][row] = col * row;

{

Heap

LDOWL»O#_.
OOAO#_.

Note: This heap picture

is simplified — it omits the
class identifiers and
length fields for all 6 of
the arrays depicted.
(Contrast with the array
shown earlier.)

Note also that orientation
doesn’t matter on the heap.

ArrayDemo.java

ArrayExamples.java

Design Exercise: Resizable Arrays

Arrays that grow without bound.

Please see Chapter 33 in the Lecture Notes for
more practice with arrays

Object encapsulation

All modification to the state of the object must be done using
the object's own methods.

Use encapsulation to preserve invariants about the state of
the object.

Enforce encapsulation by not returning aliases from methods.

