
Programming Languages 
and Techniques

(CIS1200)

Lecture 24

Resizable Arrays, Java ASM
Chapters 22 and 23



Announcements
• HW06: Pennstagram
– Java array programming
– Due Thursday, October 31st at 11.59pm

2



Recap: Java Arrays

• An array is a sequentially ordered collection of values
that can be indexed in constant time 

• Index elements from 0

• Basic array expression forms
   a[i]                access element of array a at index i
   a[i] = e      assign e to element of array a at index i 
   a.length      get the number of elements in a



Multidimensional Arrays



Multi-Dimensional Arrays

String[][] names = {{"Mr. ", "Mrs. ", "Ms. "},
        {"Smith", "Jones"}};

System.out.println(names[0][0] + names[1][0]);
//  --> Mr. Smith
System.out.println(names[0][2] + names[1][1]);
//  --> Ms. Jones

A 2-d array is just an array of arrays...

More brackets → more dimensions

String[][]       just means    (String[])[]
names[1][1]    just means    (names[1])[1]



Multi-Dimensional Arrays

int[][] products = new int[5][];
for (int col = 0; col < 5; col++) {
    products[col] = new int[col + 1];
    for (int row = 0; row <= col; row++) {
        products[col][row] = col * row;
    }
}

What would a “Java ASM” 
stack and heap look like 
after running this program?



Multi-Dimensional Arrays

int[][] products = new int[5][];
for (int col = 0; col < 5; col++) {
    products[col] = new int[col + 1];
    for (int row = 0; row <= col; row++) {
        products[col][row] = col * row;
    }
}

0 0 0 0 0

1 2 3 4

4 6 8

9 12

16

products

Stack Heap

Note: This heap picture
is simplified – it omits the 
class identifiers and 
length fields for all 6 of 
the arrays depicted.
(Contrast with the array
shown earlier.)

Note also that orientation
doesn’t matter on the heap.



Design Exercise: Resizable Arrays

Arrays that grow without bound.

Please see Chapter 32 in the Lecture Notes for 
more practice with arrays



Object encapsulation
• All modification to the state of the object must be done using 

the object's own methods.

• Use encapsulation to preserve invariants about the state of 
the object.

• Enforce encapsulation by not returning aliases from methods.



Revenge of the Son 
of the 

Abstract Stack Machine



Java Abstract Stack Machine
• Similar to OCaml Abstract Stack Machine

– Workspace
• Contains the currently executing code

– Stack
• Remembers the values of local variables and "what to do next" after 

function/method calls
– Heap

• Stores reference types: objects and arrays 

• Key differences:
– Everything, including stack slots, is mutable by default
– Objects store what class was used to create them
– Arrays store type information and length
– New component: Class table (coming soon)



Java Primitive Values
• The values of these data types occupy (less than) one 

machine word and are stored directly in the stack slots.

Type Description Values

byte 8-bit -128 to 127
short 16-bit integer -32768 to 32767
int 32-bit integer -231 to 231 - 1
long 64-bit integer -263 to 263 - 1
float 32-bit IEEE floating point

double 64-bit IEEE floating point

boolean true or false true false
char 16-bit unicode character 'a' 'b' '\u0000'



Heap Reference Values

Objects

• Name of the class that 
constructed it

• Values for all non-static 
fields

class Node {
   private int elt;
   private Node next;
   …
}

Arrays

• Type of values that it stores
• Length
• Values for all of the array 

elements
int [] a = 

  { 0, 0, 7, 0 };

Node
elt 1

next null

int[]
length 4

0 0 7 0

fields may
or may not be 
mutable
public/private not
tracked by ASM

length never
    mutable;
elements always
   mutable



Objects on the ASM



What does the heap look like at the end of this program?

Counter[] a = { new Counter(), new Counter() };
 Counter[] b = { a[0], a[1] };
 a[0].inc();
 b[0].inc();
 int ans = a[0].inc();

public class Counter {

  private int r;

  public Counter () { 
    r = 0; 
  }

  public int inc () {
    r = r + 1;
    return r;
  }

}



Stack Heap

What does the ASM look like at the end of this program?

Counter[] a = { new Counter(), new Counter() };
 Counter[] b = { a[0], a[1] };
 a[0].inc();
 b[0].inc();
 int ans = a[0].inc();

public class Counter {

  private int r;

  public Counter () { 
    r = 0; 
  }

  public int inc () {
    r = r + 1;
    return r;
  }

}
Counter
r 3

Counter
r 0

Counter[]
length 2

Counter[]
length 2

a

b





public class Node { 
  public int elt;
  public Node next;
  public Node(int e0, Node n0) {
    elt  = e0;
    next = n0;
  }
}
public class Test {
  public static void main(String[] args) {
    Node n1 = new Node(1,null);
    Node n2 = new Node(2,n1);
    Node n3 = n2;
    n3.next.next = n2;
    Node n4 = new Node(4,n1.next);
    n2.next.elt = 9;
    System.out.println(n1.elt);
  }

}

What does the following program print?      
1 – 9   

or   10     for    "NullPointerException"

Answer: 9



Workspace Stack Heap

Node n1 = new Node(1,null);
Node n2 = new Node(2,n1);
Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;



Workspace Stack Heap

Node n1 = ;
Node n2 = new Node(2,n1);
Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next null

Note: we’re skipping details here about 
how the constructor works. We’ll fill them in
next week.  For now, assume the constructor 
allocates and initializes the object in one step.



Workspace Stack Heap

Node n2 = new Node(2,n1);
Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next null

n1



Workspace Stack Heap

Node n2 = ;
Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next null

n1

Node
elt 2

next



Workspace Stack Heap

Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next null

n1

Node
elt 2

next

n2



Workspace Stack Heap

n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next null

n1

Node
elt 2

next

n2

n3



Workspace Stack Heap

n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next null

n1

Node
elt 2

next

n2

n3



Workspace Stack Heap

n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next

n1

Node
elt 2

next

n2

n3



Workspace Stack Heap

Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

Node
elt 1

next

n1

Node
elt 2

next

n2

n3



Workspace Stack Heap

Node n4 = ;
n2.next.elt = 9;

Node
elt 1

next

n1

Node
elt 2

next

n2

n3

Node
elt 4

next



Workspace Stack Heap

n2.next.elt = 9; Node
elt 1

next

n1

Node
elt 2

next

n2

n3

Node
elt 4

next

n4



Workspace Stack Heap

n2.next.elt = 9; Node
elt 1

next

n1

Node
elt 2

next

n2

n3

Node
elt 4

next

n4



Workspace Stack Heap

n2.next.elt = 9; Node
elt 9

next

n1

Node
elt 2

next

n2

n3

Node
elt 4

next

n4



OOooooo

OO
Subtypes

programmingOOooooo



Review: Static Types
• Types stop you from using values incorrectly 

– 3 + true
– (new Counter()).m() 

• All expressions have types
– 3 + 4  has type int
– “A”.toLowerCase()  has type String

• How do we know if  x.m()  is correct? or x+3?
– depends on the type of x

• Type restrictions preserve the types of variables
– assignment "x = 3" must be to values with compatible types
– methods "o.m(3)" must be called with compatible arguments

HOWEVER: in Java, values can have multiple types....



Interfaces
• Give a type for an object based on what it does, not 

on how it was constructed
• Describes a contract that objects must satisfy
• Example: Interface for objects that have a position 

and can be moved

public interface Displaceable {
  int getX();
  int getY();
  void move(int dx, int dy);
}

No fields, no constructors, no 
method bodies!

keyword



public class Point implements Displaceable {
  private int x, y;
  public Point(int x0, int y0) {
    x = x0;
    y = y0;
  }
  public int getX() { return x; }
  public int getY() { return y; }
  public void move(int dx, int dy) {
    x = x + dx;
    y = y + dy;
  }
}

Implementing the interface
• A class that implements an interface must provide 

appropriate definitions for the methods specified in the 
interface

methods
required to 
satisfy contract

interfaces 
implemented



Another implementation

public class Circle implements Displaceable {
  private Point center;
  private int radius;
  public Circle(int x, int y, int initRadius) {
    Point center = new Point(x, y);
    radius = initRadius;
  }
  public int getX() { return center.getX(); }
  public int getY() { return center.getY(); }
  public void move(int dx, int dy) {
    center.move(dx, dy);
  }
} Objects with different

local state can satisfy
the same interface



Implementing multiple interfaces

public class Circle implements Displaceable, Area {
  private Point center;
  private int radius;
  // constructor
     // implementation of Displaceable methods

  // new method
   public double getArea() { 
     return Math.pi * radius * radius; 
  }
  
}

public interface Area {
   public double getArea();
}

Classes can implement
multiple interfaces by 
including all of the 
required methods





Assume Circle implements the Displaceable interface.
The following snippet of code typechecks:

1. True
2. False

// in class C
public static void moveItALot (Displaceable s) {
 … //omitted
}

… // elsewhere
Circle c = new Circle(new Point(10,10),10);
C.moveItAlot(c);

Answer: True



Subtyping

Definition:  Type A can be declared to be a subtype of type B 
if values of type A can do anything that values of type B can 
do.  Type B is called a supertype of A.

Example:  A class that implements an interface declares a 
subtyping relationship



 Displaceable   Area    supertypes

Point   Circle   Rectangle    subtypes

Subtypes and Supertypes
• An interface represents a point of view about an object
• Classes can implement multiple interfaces

interfaces

classes

classes implement 
interfaces

Types can have many different supertypes / subtypes 



Subtype Polymorphism*
• Main idea:

• If B is a subtype of A, it provides all of A’s (public) methods
• The behavior of a nonstatic method (like move) depends on 

B’s implementation

Anywhere an object of type A is needed, an object that 
actually belongs to a subtype of A can be provided.

*polymorphism = “many shapes”

// in class C 
public static void leapIt(Displaceable c) {

c.move(1000,1000);
}
// somewhere else
C.leapIt(new Circle (p, 10));



• A  a variable declared with type A can store any object that is 
a subtype of A

• Methods with parameters of type A must be called with 
arguments that are subtypes of A

Subtyping and Variables

Displaceable a = new Circle(new Point(2,3), 1);

subtype of Displaceablesupertype of Circle


