Programming Languages
and Techniques
(C1S1200)

Lecture 25

Java ASM, Subtyping and Extension
Chapters 23 & 24

Announcements

* HWO06: Pennstagram

— Java array programming
— Due tomorrow at 11.59pm

Revenge
of the
Abstract Stack Machine

Java Abstract Stack Machine

* Similar to OCaml Abstract Stack Machine
— Workspace
* Contains the currently executing code

— Stack

e Remembers the values of local variables and "what to do next" after
function/method calls

— Heap
» Stores reference types: objects and arrays

* Key differences:
— Everything, including stack slots, is mutable by default
— Objects store what class was used to create them
— Arrays store type information
— New ASM component: Class table (coming soon)

Java Primitive Values

The values of these data types occupy one machine word (or
less) and are stored directly in the stack...

byte 8-bit -128 to 127
short 16-bit integer -32768 to 32767
int 32-bit integer =231 to 231 - 1
long 64-bit integer -263 to 203 - 1
float 32-bit IEEE floating point

double 64-bit IEEE floating point

boolean true or false true false

Y

char 16-bit unicode character a' 'b'" "\u@ooo’

Heap Reference Values

Arrays

Type of values that it stores

Length

Values for all of the array

elements

int [] a =
{0, 0,7, 03},

length | 4 \

olo]7]o

length never
mutable;

elements always
mutable

Objects

e Name of the class that

constructed it

* Values for all non-static

fields
class Node {

private int elt;

private Node next;

elt 1

next | null

fields may

or may not be
Mutable;
public/private
annotations not
tracked by ASM

What does the heap look like at the end of this program?

Counter[] a = { new Counter(), new Counter(Q) };
Counter[] b = { a[@], a[1] };

al[@].inc(); 11 1
bE0T . inc (). public class Counter {

int ans = a[@].inc(Q); private int r;

public Counter (O {
r=20;
hy

public int inc O {
r=r + 1;
return r;

}

What does the ASM look like at the end of this program?

Counter[] a = { new Counter(), new Counter() };
Counter[] b = { a[@], a[1] };

al@].incQ); Tic cl
b[0].incO; public class Counter {

int ans = a[@].incQ);

private int r;

public Counter () {
r = 0;

Stack Heap ¥

public int inc O {
r=r+1;
return r;

24: What does the following program print? 70

1

0%
2

0%
3

0%
public class Node {
public int elt;
public Node next; 4
public Node(int e@, Node n@) {

elt = e0d; 00/0

next = n@;

}
public class Test {
public static void main(String[] args) { 0,
Node n1 = new Node(1,null); 0%
Node nZ = new Node(2,nl);
Node n3 = n2;
n3.next.next = n2; 6
Node n4 = new Node(4,nl.next);

n2.next.elt = 9; 00/0

System.out.printin(nl.elt);
0%
0%

0%
NullPointerException
0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

What does the following program print?
1-9

or 10 for "NullPointerException"

public class Node {

public int elt;
public Node next;
public Node(int e@, Node n@) {
elt e0;
next = n0@;
¥
hy
public class Test {
public static void main(String[] args) {
Node n1l = new Node(l,null);
Node n2 = new Node(2,nl);
Node n3 = nZ2;
n3.next.next = nZ;
Node n4 = new Node(4,nl.next);
nZ.next.elt = 9;
System.out.printin(nl.elt);

} Answer: 9

Workspace
Node nl = new Node(d,null);
Node n2 = new Node(2,nl);
Node n3 = nZ;
n3.next.next = nZ;
Node n4 = new Node(4,nl.next);

nZ.next.

elt = 9;

Stack

Heap

Workspace Stack Heap

Node nl =!{/, _3

Node n2 = new Node(2,nl); 1 1
Node n3 = nZ; elt
n3.next.next = nZ; next I null
Node n4 = new Node(4,nl.next); :
nZ.next.elt = 9;

Note: we’re skipping details here about

how the constructor works. We'll fill them in
next week. For now, we assume the constructor
allocates and initializes the object in one step.

Workspace

Node nZ2
Node n3
n3.next.
Node n4
nZ.next.

new Node(2,nl);

nZ;

next = nZ2;

= new Node(4,nl.next);
elt = 9;

Stack

Heap

nl

=

elt 1

next | null

Workspac

Node nZ2

Node n3
n3.next.
Node n4
nZ.next.

/[
nZ

next = n2;
= new Node(4,nl.next);
elt = 9;

Stack

Heap

nl

B

elt 1
nhext I null
elt 2

hext I —

Workspace

Node n3 = nZ;

n3.next.next = nZ;

Node n4 = new Node(4,nl.next);
nZ.next.elt = 9;

Stack

Heap

nl

=

n2

B

elt 1
next | nhull
elt 2

next I ~—

Workspace

n3.next.next = nZ;
Node n4 = new Node(4,nl.next);
nZ.next.elt = 9;

B

elt 1
next I null
elt 2

next I ~—

Workspace

n3.next.n€kt = n2;
Node n4 = new Node(4,nl.next);
nZ.next.elt = 9;

Workspace

n3.next.

t = nZ;

Node n4 =

new Node(4,nl.next);

nZ.next.elt = 9;

Workspace

Node n4 = new Node(4.nl.next);
nZ.next.elt = 9;

elt

hext |

B

elt

hext |

.\

Workspac
/

Node n4 =/;
nZ.next.elt = 9;

\

Stack

nl

n2

n3

elt

hext

_»

[

elt

hext

—
=B

elt

hext

Workspace

nZ.next.elt = 9;

Stack

nl

n2

n3

n4

elt

hext

_»

[

elt

hext

—
=B

elt

hext

Workspace Stack Heap

nZ.next .«€

Workspace

nZ.next . €t = 9;

Workspace

nZ.next . €t = 9;

So if we now print the value of
nl.elt, we get...

Workspace

nZ.next . €t = 9;

So if we now print the value of
nl.elt, we get...

9

Whew.

@mmmmm .

¢ 00

N o Subtypes

Review: Static Types

Types stop you from using values incorrectly

— 3 + true
— (new Counter()).m(O)

All expressions have types
— 3 + 4 hastype 1int
— “A” .toLowerCase() hastype String

How do we know if X.m() is correct? or X+3?
— depends on the type of X

Type restrictions preserve the types of variables
— Assignments like "x = 3" must be of values with compatible types
— methods "o0.m(3)" must be called with compatible arguments

HOWEVER: in Java, values can have multiple types....

Review: Interfaces

Give a type for an object based on what it does, not
on how it was constructed

Describes a contract that objects must satisfy

Example: Interface for objects that have a position
and can be moved — keywore

public interFace<U{splaceab1e {

¥

int getX();
int getY();
void move(int dx, int dy);

No fields, no constructors, no
method bodies!

Implementing an interface

A class tha

t implements an interface must provide appropriate

definitions for the methods specified in the interface

methods
required to
satisfy contract

_—

public class Point implements Displaceable {

private int x, vy; N\\
public Point(int x0, int y@) {

X = x@; interfaces

y = y@; implemented
¥

public int getX() { return x; }
public int getY() { return y; }
public void move(int dx, int dy) {
X = X + dx;
LYy =y +dy;
h
h

Another implementation

public class Circle implements Displaceable {
private Point center;
private int radius;
public Circle(int x, int y, int initRadius) {
center = new Point(x, y);
radius = initRadius;

3
public int getX() { return center.getX(); }

public int getY() { return center.getY(); }

public void move(int dx, int dy) {
center.move(dx, dy);

¥

1 Objects with different

local state can satisfy
the same interface

Implementing multiple interfaces

public interface Area {
public double getArea();
3

public class Circle implements Displaceable, Area {
private Point center;
private int radius;
// constructor
// implementation of Displaceable methods

// new method
public double getArea() {
return Math.p1 * radius * radius:

Iy Classes can implement
multiple interfaces by
including all of the

required methods

“u n

24: Assume Circle implements the Displaceable interface. The following snippet of

code typechecks: 70

True

0%

False

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Assume Circle implements the Displaceable interface.
The following snippet of code typechecks:

// 1n class C

public static void moveltALot (Displaceable s) {
.. //omitted
}

.. // elsewhere

Circle ¢ = new Circle(new Point(10,10),10);
C.movelItALot(c);

1. True
2. False

Answer: True

Subtyping

Definition: Type A can be declared to be a subtype of type B
if values of type A can do anything that values of type B can
do. Type B is called a supertype of A.

Example: A class that implements an interface

Subtyping relationships are explicitly declared in Java

Subtypes and Supertypes

* An interface represents a point of view about an object

* Classes can implement multiple interfaces

interfaces
Displaceable Area supertypes
classes implement
interfaces
Point Circle Recta ngle subtypes

classes

Types can have many different supertypes / subtypes

Subtype Polymorphism*

e Main idea:

Anywhere an object of type A is needed, an object that
actually belongs to a subtype of A can be provided.

// 1in class C

public static void leapIt(Displaceable c) {
c.move(1000,1000);
by
// somewhere else
C.leapIt(new Circle (p, 10));

e If Bisasubtype of A, it provides all of A’s (public) methods

 The behavior of a non-static method (like move) depends on
B’s implementation

*polymorphism = “many shapes”

Subtyping and Variables

A avariable declared with type A can store any object that is
a subtype of A

Displaceable a = new CErcle(new Point(2,3), 1);

. N\

supertype of Circle subtype of Displaceable

* Methods with parameters of type A must be called with
arguments that are subtypes of A

Key Idea: Liskov’s Substitution Principle*

If S is a subtype of T, then an object of type T may be
replaced by an object of type S anywhere a T is

expected
e (without breaking the program’s type-
correctness)

*Named for Turing award winner and designer of the
influential OO language CLU, Barbara Liskov, who introduced

this idea in 1988.

Extension — More complex subtyping

Extension — More complex subtyping

Interface Extension — An interface that extends
another interface declares a subtype

Class Extension — A class that extends another
class declares a subtype

Interface Extension

Build richer interface hierarchies by extending existing

interfaces.

public interface Displaceable {
int getX();
int getY();
vold move(int dx, int dy);

}

public interface Area {
double getArea();

}

public interface Shape extends Displaceable, Area {

Rectangle getBoundingBox();
¥

The Shape type includes all
the methods of Displaceable
and Area, plus the new
getBoundingBox method.

Note the “extends” keyword. [

Interface Hierarchy

Displaceable Area Elass Point implements Displaceable
\ / .. // omitted
}
class Circle implements Shape {
Shape .. // omitted
/ I 2 N hy
! . -=" e class Rectangle implements Shape {
Point Circle Rectangle .. // omitted
¥

* Shape is a subtype of both Displaceable and Area.

e Circle and Rectangle are both subtypes of Shape; both are
also subtypes of Displaceable and Area by transitivity.
* Note that one interface may extend several others.

— Interfaces do not necessarily form a tree, but the interface hierarchy
cannot have any cycles.

Class Extension: “Inheritance”

* Classes, like interfaces, can extend one another.

— Unlike interfaces, a class can extend only one other class.

* The extending class inherits all the fields and
methods of its superclass and may include additional
fields or methods.

— Inheritance reflects an “is a” relationship between objects
(e.g., a Car is a Vehicle).

Simple Inheritance

In simple inheritance, the subclass only adds new fields or

methods.
— ltis also possible to replace (override) method definitions — we’ll come
back to this later

Use simple inheritance to share common code among related
classes.

Example: Circle, and Rectangle have identical code for getX(),
getY(), and move() methods when implementing Displaceable.

Class Extension: Inheritance

public class DisplaceableImpl implements Displaceable {
private int x; private int y;
public DisplaceableImpl(int x, int y) { .. }
public int getX() { return x;}
public int getY() { return y; }
public void move(int dx, int dy) { x += dx; y += dy; }
¥

public class Circle extends DisplaceableImpl
implements Shape {

private int radius;

public Circle(Point pt, int radius) {
super(pt.getX(),pt.getY());
this.radius = radius;

¥

public double getArea() { .. }

public Rectangle getBoundingBox() { .. }

()

Subtyping with Inheritance

Displaceable Area

[” \ /
Displaceablelmpl

Shape

N 4
- _

Point Circle Rectangle

Type Cis a subtype of D if D is reachable from C by

following zero or more edges upwards in the
Extends hierarchy.

— — — — Implements e e.g. Circle is a subtype of Area, but Point is not

* Circle is also a subtype of itself

Example of Simple Inheritance

See: Shapes.zip

Inheritance: Constructors

e Constructors are not inherited

— Instead, each subclass constructor should invoke a
constructor of the superclass using the keyword super

— Super must be the first line of the subclass constructor

* If the parent class constructor takes no arguments, it is OK to
omit the explicit call to super (it will be supplied
automatically)

public Circle(Point pt, int radius) {

super(pt.getX(),pt.getY());
this.radius = radius;

}

Class Object

public class Object {
boolean equals(Object o) {
.. // test for equality
by

String toString() {
.. // return a string representation
¥

// other methods omitted

Object is the root of the class tree
— Classes with no “extends” clause implicitly extend Object
— Arrays also implement the methods of Object
— The Object class provides methods useful for all objects to support

Object is the top (i.e., “most super”) type in the subtyping hierarchy

Recap

Displaceablelmpl

Point

Circle

Extends

— — = = Implements

Subtype by fiat

classes (form a tree)

interfaces

Displaceable Area
Shape
S

- Interfaces extend (possibly many) interfaces

- Classes implement (possibly many) interfaces

- Classes (except Object) extend exactly one
other class (Object by default)

- Interface types (and arrays) are subtypes “by

fiat” of Object

Rectangle

Other forms of inheritance

 Java has other features related to inheritance
(some of which we will discuss later in the course):

— A subclass might override (re-implement) a method already found in the
superclass.

— Aclass might be abstract —i.e., it does not provide implementations for
all of its methods (its subclasses must provide them instead)

 These features are tricky to use properly, and the need for them
arises only in somewhat special cases
— Designing complex, reusable libraries
— Special methods like equals and toString

 We recommend avoiding all forms of inheritance (even “simple
inheritance”) whenever possible: use interfaces and composition
instead

Especially: Avoid method overriding except using it is part
of a well-known "contract” of the design

Static Types vs. Dynamic Classes

"Static" types vs. "Dynamic" classes

The static type of an expression is a type that describes what
we know about the expression at compile-time (without
thinking about the execution of the program)

Displaceable x;

The dynamic class of an object is the class that it was created
from at run time

X = new Point(2,3)

In OCaml, we had only static types

In Java, we also have dynamic classes because of objects

— The dynamic class will always be a subtype of its static type
— The dynamic class determines what methods are run

“m

25: What is the static type of a1 on line A?

0

Area

Circle

None of the above

Not well typed

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

Static type vs. Dynamic type

public Area asArea (Area a)
{ return a; } What is the static
type of al on line A?

Point p = new Point(5,5);

Circle ¢ = new Circle (p,3);

Area al = C, // A 1. Area
2. Circle

__B__y = asArea (c¢); 3. None of the above
4. Not well typed

Displaceable Area

-
-
-
-
-
-
-
-
-
-

Displaceablelmpl

Shape
oeET Area

Point Circle Rectangle

Extends
— = Implements
«+...... Syubtvpe bv fiat

“m

25: What is the dynamic class of a1 when execution reaches A?

0

Area

Circle

None of the above

Not well typed

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

Static type vs. Dynamic class

public Area asArea (Area a)
{ return a; } What is the dynamic
class of al when
execution reaches A?
Point p = new Point(5,5);

Circle ¢ = new Circle (p,3);

Area al = C, // A 1. Area
2. Circle

__B__y = asArea (c¢); 3. None of the above
4. Not well typed

Obje&t /]classes (form a tree) | /

Displaceable Area

-
-
— -
-
=
—’—
-

Displaceablelmpl

Shape .
/1 \ e Circle

Point Circle Rectangle

Extends

- = Implements
-+« «««« Subtype by fiat

“m

25: What type could we declare for x (in blank B)?

0

Area

Circle

None of the above

Not well typed

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

Static type vs. Dynamic class

public Area asArea (Area a)
{ return a; }

new Point(5,5);
new Circle (p,3);
// A

Point p =
Circle c =
Area al = c;

__B__y = asArea (c¢);

ObjeC /’ classes (form a tree) ‘

Dlsplaceable Area

.

Displaceablelmpl
£ - Shape

1 S 2
- -
_- -
- -
- -
" -
o= P
- PR
i P
- -

Point Circle Rectangle

S 4
.
-
e
-
-

Extends

- = Implements
-+« + Subtype by fiat

H~wWwN R

What type could we
declare for x (in blank
B)?

. Area

. Circle

. Either of the above
. Not well typed

Area

Inheritance and Dynamic Dispatch

When do constructors execute?
How are fields accessed?
What code runs in a method call?
What is ‘this’?

ASM refinement: The Class Table

Workspace Stack Heap Class Table

ASM refinement: The Class Table

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

}

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

by

The class table contains:
* the code for each method,
* references to each class’s parent, and
* the class’s static members.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends
Decr(int initY) { .. }

void dec(){incBy(-y);}

this

 Inside a non-static method, the indentifier this is an
immutable reference to the object on which the method was

invoked.

* References to local fields and methods have an implicit

“this.” in front of them.

class C {
private int f;

public void copyF(C other) {
this.f = other.f;
hy

Stack

this

e
>
f 0

An Example

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

}

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

by

// .. somewhere in main:
Decr d = new Decr(2);
d.dec();

int x = d.get(Q);

..with Explicit th1is and super

public class Counter extends Object {
private int x;
public Counter () { super(); this.x = 0;
public void incBy(int d) { this.x = thi
public int get() { return this.x; }

¥

public class Decr extends Counter {
private int y;
public Decr (int initY) { super(); this.y = initY; }
public void dec() { this.incBy(-this.y); }

by

// .. somewhere in main:
Decr d = new Decr(2);
d.dec();

int x = d.get(Q);

Constructing an Object

Workspace

Decr d = new Decr(2);

d.dec(Q);
int x = d.get(Q);

Stack

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter
extends

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends
Decr(int initY) { .. }

void dec(){incBy(-y);}

Allocating Space on the Heap

Workspace Stack Heap
super(); Sy
this.y = initY; int x = d.getO; »
this o~ I
initY

[2]

Invoking a constructor:

* allocates space for a new object
in the heap

* includes slots for all fields of all
ancestors in the class tree
(here: x andy)

* creates a pointer to the class —
this is the object’s dynamic type

* runs the constructor body after
pushing parameters and this
onto the stack

Note: fields start with a
“sensible” default
- 0 for numeric values
-null for references

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Calling super

Workspace Stack Heap
—p—QS“.e'" o By
this.y = initY; int x = d.getO; »
this ~—
y |
inity | 2]
Call to super:

* The constructor (implicitly) calls
the super constructor

* Invoking a
method or constructor pushes the
saved workspace, the method
params (none here) and a new
this pointer.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Abstract Stack Machine

Workspace Stack
—'O—qu.e'") 2 decy:
this.x = @; int x = d.get();

this o~
inity | 2|
Eéis.y = initY;

this P

(Running Object’s default
constructor omitted.)

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Assigning to a Field

Workspace Stack Heap
this.x = 0; Decr 4= =
int x = d.getQ);
X
1 -
this y I 0 I

inity | 2]

Eﬁis.y = initY;

this o

Assighment into the this.x field

goes in two steps:

- look up the value of th1is in the

stack

- write to the “X” slot of that

object.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

__Assigning to a Field

Stack

Decr d = _;
d.decQ);
int x = d.getQ);

this

initY

Eﬁis.y = initY;

this

Assighment into the this.x field

goes in two steps:

- look up the value of this in the

stack

- write to the “x” slot of that

object.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends Object

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Done with the call

Workspace Stack Heap
. Decr d = _;
’ d.decQ);
int x = d.getQ);
X
1 (-
this y I 0 I

inity | 2]

Eﬁis.y = initY;

this o

Done with the call to “super”, so
pop the stack to the previous
workspace.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Continuing

Workspace Stack Heap
this.y = initY; oSecty: =
int x = d.getQ);
X
this [-
y |

inity | 2]

Continue in the Decr class’s
constructor.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO{incBy(-y);}

Abstract Stack Machine

Workspace

Stack

this.y

2,

Decr d = _;
d.decQ);

int x = d.getQ);

this

k

initY

[2]

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Assigning to a field

Workspace Stack Heap Class Table

Decr d = _;
d.decQ);

this.y = 2;

Object

int x = d.getQ);

String toString(){..

boolean equals..

Counter

extends Object

Counter() { x = 0; }

Assighment into the this.y
field. void incBy(int d){.}

int get() {return x;}

(This really takes two steps as we
saw earlier, but we’re skipping

Decr
some for the sake of brevity...)

extends Counter

Decr(int initY) { .. }

void dec(){incBy(-y);}

Done with the call

Workspace Stack Heap
. Decr d = _;
’ d.decQ);
int x = d.getQ);
X /)
1 (-
this y I > I

inity | 2]

Done with the call to the Decr
constructor, so pop the stack and
return to the saved workspace,
returning the newly allocated
object (now in the th1is pointer).

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Returnmg the Newly Constructed Object

Workspaﬁ/

Decr d =/;
d.dec(Q);
int x = d.get(Q);

Stack

Continue executing the program.

_g

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Allocating a local variable

Workspace Stack

d.decQ; d

1]

int x = d.get(Q);

Allocate a stack slot for the local
variable d. Note that it’s mutable...
(bold box in the diagram).

Aside: since, by default, fields and
local variables are mutable in Java,
we sometimes omit the bold boxes

and just assume the contents can
be modified.

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Dynamic Dispatch: Finding the Code

Worksgag/

decC

1]

int x = d.get(Q);

Invoke the dec method on the
object. The code is found by
“pointer chasing” through the class
hierarchy.

This is an example of dynamic
dispatch: Which code is run
depends on the dynamic class of
the object. (In this case, Decr.)

Stack x ap

Search through the
methods of the Decr,
class trying to find one
called dec.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Dynamic Dispatch: Finding the Code

Workspace

Stack

this.incBy(-this.y);

d

1|

{ﬁt x = d.getQ);

this

Call the method, remembering the
current workspace and pushing the
this pointer and any arguments

(none in this case).

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Reading a Field’s Contents

Workspace Stack

this.incBy(-#£V); d

1|

{ﬁt x = d.getQ);

this

Read from the Y slot of the object.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO{incBy(-y);}

Dynamic Dispatch, Again

Workspag/ Stack

/

A ABY(-2); d

{ﬁt x = d.getQ);

this

Invoke the incBy method on the
object via dynamic dispatch.

In this case, the 1ncBy method is
inherited from the parent, so
dynamic dispatch must search up
the class tree, looking for the
implementation code.

The search is guaranteed to
succeed — Java’s static type system
ensures this.

Search through the
methods of the Decr
class looking for one
called 1ncBy.

If the search fails,
recursively search the
parent classes.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends
Counter
void incBy(int d){..}

int get() {return x;}

Decr

extends Counter

Decr(int imd

dec(){incBy(-y);}

Running the body of 1hcBYy

Workspace

Stack Heap

this.x =

d 1]

{ﬁt x = d.getQ);

this

this.x

It takes a few steps...

Body of 1ncBy:
-reads this.X
- looks up d

- computes result this.x + d
- stores the answer (-2) in this.Xx

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

After a few more steps...

Workspace Stack

int x = d.get(Q); d I‘II

Now use dynamic dispatch to invoke the
get method for d. This involves
searching up the class hierarchy again...

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

After yet a few more steps...

Workspace

Stack

1]

L -2]

Done! (Phew!)

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Summary: this and dynamic dispatch

¢ When object’s method is invoked, as in 0.m(), the code that runs is
determined by O’s dynamic class.

— The dynamic class, represented as a pointer into the class table, is included in
the object structure in the heap

If the method is inherited from a superclass, determining the code for m might
require searching up the class hierarchy via pointers in the class table
— This process of dynamic dispatch is the heart of OOP!

Once the code for m has been determined, a binding for th1is is pushed
onto the stack.

— The th1s pointer is used to resolve field accesses and method invocations
inside the code.

Static members and the Java ASM

Static Members

 C(Classes in Java can also act as containers for code and data.

e The modifier stat1ic means that the field or method is
associated with the class and not instances of the class.

You can do a static assignment

to initialize a static field.
class C { éf,/””/

public static int x = 23;
public static int someMethod(int y) { return C.x + y; }
public static void main(String args[]) {

.
}

// Elsewhere:
C.x = C.x + 1;
C.someMethod(17);

\ Access to the static member uses the class name

C.xorC.foo()

Based on your understanding of ‘this’, is it possible to
refer to ‘this’ in a static method?

1. No
2. Yes
3. I’'m not sure

Example of Statics

The java.lang.Math library provides static fields/methods for many
common arithmetic operations:

Math.PI == 3.141592653589793
Math.sin, Math.cos

Math.sqgrt

Math.pow

etc.

Class Table Associated with C

The class table entry for C
C has a field slot for X. :
\ extends Object
Updates to C. X modify E—y— I >3 I
the contents of this

static int someMethod(int y) {
return x + y; }

slot: C.x = 17;

static void main(String args[])

{.}

A static field is a global variable
— There is only one heap location for it (in the class table)

— Modifications to such a field are visible everywhere the field is
 if the field is public, this means everywhere

— Use with care!

Static Methods (Details)

* Static methods do not have access to a th1s pointer
— Why? There isn’t an instance to dispatch through!
— Therefore, static methods may only directly call other static methods.
— Similarly, static methods can only directly read/write static fields.

— Of course, a static method can create instance of objects (via hew) and
then invoke methods on those objects.

* Gotcha: It is possible (but confusing) to invoke a static method
as though it belongs to an object instance.
— e.g. o.someMethod(17) where someMethod is static

