Programming Languages
and Techniques
(C1S1200)

Lecture 26

The Java ASM, Dynamic Dispatch
Chapter 24

Announcements (1)

* HWO7: PennPals
— Programming with Java Collections
— Available soon
— Due Tuesday, November 12 at 11.59pm

* Midterm 2: Friday, November 15t"

— Similar to Midterm 1

— Content: HW 4 — 6, Chapters 11-21 (Java Arrays) and
Chapter 32 (Encapsulation) of lecture notes

Announcements (2)

 Midterm 2: Friday, November 15
— Coverage: up to Monday, Oct. 28 (Chapters 11-21,

32)
— During lecture (001 @ 10.15am, 002 @ noon)
Last names: A-Z Meyerson Hall B1

— 60 minutes; closed book, closed notes
— Review Material

* old exams on the web site (“schedule” tab)
— Review Session

* TBA

Subtyping

Definition: Type A can be declared to be a subtype of type B
if values of type A can do anything that values of type B can
do. Type B is called a supertype of A.

Example: A class that implements an interface declares a
subtyping relationship

Subtypes and Supertypes

* An interface represents a point of view about an object

* Classes can implement multiple interfaces

interfaces
Displaceable Area supertypes
classes implement
interfaces
Point Circle Recta ngle subtypes

classes

Types can have many different supertypes / subtypes

Subtype Polymorphism*

e Main idea:

Anywhere an object of type A is needed, an object that
actually belongs to a subtype of A can be provided.

// 1in class C

public static void leapIt(Displaceable c) {
c.move(1000,1000);
by
// somewhere else
C.leapIt(new Circle (p, 10));

e If Bisasubtype of A, it provides all of A’s (public) methods

 The behavior of a nonstatic method (like move) depends on
B’s implementation

*polymorphism = “many shapes”

Subtyping and Variables

A avariable declared with type A can store any object that is
a subtype of A

Displaceable a = new CErcle(new Point(2,3), 1);

. N\

supertype of Circle subtype of Displaceable

* Methods with parameters of type A must be called with
arguments that are subtypes of A

Extension — More complex subtyping

Interface Extension — An interface that extends
another interface declares a subtype

Class Extension — A class that extends another
class declares a subtype

Interface Extension

Build richer interface hierarchies by extending existing

interfaces.

public interface Displaceable {
int getX();
int getY();
vold move(int dx, int dy);

}

public interface Area {
double getArea();

}

public interface Shape extends Displaceable, Area {

Rectangle getBoundingBox();
¥

The Shape type includes all
the methods of Displaceable
and Area, plus the new
getBoundingBox method.

Note the “extends” keyword. [

Class Extension: Inheritance

e Classes, like interfaces, can also extend one another.

— Unlike interfaces, a class can extend only one other class.

* The extending class inherits all the fields and
methods of its superclass and may include additional
fields or methods.

— This captures the “is a” relationship between objects
(e.g., a Car is a Vehicle).

Recap

Displaceablelmpl

Point

Circle

Extends

— — = = Implements

Subtype by fiat

classes (form a tree)

interfaces

Displaceable Area
Shape
S

- Interfaces extend (possibly many) interfaces

- Classes implement (possibly many) interfaces

- Classes (except Object) extend exactly one
other class (Object by default)

- Interface types (and arrays) are subtypes “by

fiat” of Object

Rectangle

Example of Simple Inheritance

See: Shapes.zip

Static Types vs. Dynamic Classes

"Static" types vs. "Dynamic" classes

The static type of an expression is a type that describes what we
know about the expression at compile-time (without thinking
about the execution of the program)

Displaceable x;

The dynamic class of an object is the class that it was created
from at run time

X = new Point(2,3)

In OCaml, we had only static types

In Java, we also have dynamic classes because of objects

— The dynamic class will always be a subtype of its static type (and a class)
— The dynamic class determines what methods are run

“m

25: What is the static type of a1 on line A?

0

Area

Circle

None of the above

Not well typed

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

Static type vs. Dynamic type

public Area asArea (Area a)
{ return a; } What is the static
type of al on line A?

Point p = new Point(5,5);

Circle ¢ = new Circle (p,3);

Area al = C, // A 1. Area
2. Circle

__B__y = asArea (c¢); 3. None of the above
4. Not well typed

Displaceable Area

-
-
-
-
-
-
-
-
-
-

Displaceablelmpl

Shape
oeET Area

Point Circle Rectangle

Extends
— = Implements
«+...... Syubtvpe bv fiat

“m

25: What is the dynamic class of a1 when execution reaches A?

0

Area

Circle

None of the above

Not well typed

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

Static type vs. Dynamic class

public Area asArea (Area a)
{ return a; } What is the dynamic
class of al when
execution reaches A?
Point p = new Point(5,5);

Circle ¢ = new Circle (p,3);

Area al = C, // A 1. Area
2. Circle

__B__y = asArea (c¢); 3. None of the above
4. Not well typed

Obje&t /]classes (form a tree) | /

Displaceable Area

-
-
— -
-
=
—’—
-

Displaceablelmpl

Shape .
/1 \ e Circle

Point Circle Rectangle

Extends

- = Implements
-+« «««« Subtype by fiat

“m

25: What type could we declare for x (in blank B)?

0

Area

Circle

None of the above

Not well typed

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

Static type vs. Dynamic class

public Area asArea (Area a)
{ return a; }

new Point(5,5);
new Circle (p,3);
// A

Point p =
Circle c =
Area al = c;

__B__y = asArea (c¢);

ObjeC /’ classes (form a tree) ‘

Dlsplaceable Area

.

Displaceablelmpl
£ - Shape

1 S 2
- -
_- -
- -
- -
" -
o= P
- PR
i P
- -

Point Circle Rectangle

S 4
.
-
e
-
-

Extends

- = Implements
-+« + Subtype by fiat

H~wWwN R

What type could we
declare for y (in blank
B)?

. Area

. Circle

. Either of the above
. Not well typed

Area

Inheritance and Dynamic Dispatch

When do constructors execute?
How are fields accessed?
What code runs in a method call?
What is ‘this’?

Inheritance: Constructors

e Constructors are not inherited

— Instead, each subclass constructor should invoke a
constructor of the superclass using the keyword super

— Super must be the first line of the subclass constructor

* If the parent class constructor takes no arguments, it is OK to
omit the explicit call to super (it will be supplied
automatically)

public Circle(Point pt, int radius) {

super(pt.getX(),pt.getY());
this.radius = radius;

}

ASM refinement: The Class Table

Workspace Stack Heap Class Table

ASM refinement: The Class Table

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

}

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

by

The class table contains:
* the code for each method,
* references to each class’s parent, and
* the class’s static members.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends
Decr(int initY) { .. }

void dec(){incBy(-y);}

this

Inside a non-static method, the variable this is a reference
to the object on which the method was invoked.

References to local fields and methods have an implicit

“this.” in front of them.

class C {
private int f;

public void copyF(C other) {
this.f = other.f;
¥

Stack

this

e
>
f 0

An Example

public class Counter {
private int Xx;
public Counter O { x = 0; }
public void incBy(int d) { x =
public int get() { return x; }
3

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

¥

// .. somewhere in main:
Decr d = new Decr(2);
d.dec(Q);

int x = d.get(Q);

X + d; }

... with Explicit this and super

public class Counter {
private int Xx;
public Counter () { super(); this.x = 0;
public void incBy(int d) { this.x = thi
public int get() { return this.x; }

}

public class Decr extends Counter {
private int y;
public Decr (int initY) { super(); this.y = initY; }
public void dec() { this.incBy(-this.y); }

¥

// .. somewhere in main:
Decr d = new Decr(2);
d.dec(Q);

int x = d.get(Q);

“m

26: What is the value of x at the end of this computation?

0

NullPointerException

Doesn't type check

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

0%

0%

Inheritance Example

public class Counter {
private int x;
public Counter (O { x = 0; }
public void incBy(int d) { x =
public int get() { return x; }

}

class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

}

// .. somewhere in main:

Decr d = new Decr(2);

d.dec();

int x = d.get(Q);

X + d; }

Answer: -2

What is the value of x
at the end of this
computation?

. -2
. -1
. 0
1
2
NPE
Doesn't type
check

NOoOuUuhAWNE

Constructing an Object

Workspace

Decr d = new Decr(2);

d.dec(Q);
int x = d.get(Q);

Stack

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter
extends

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends
Decr(int initY) { .. }

void dec(){incBy(-y);}

Allocating Space on the Heap

Workspace Stack Heap
super(); Sy
this.y = initY; int x = d.getO; »
this o~ I
initY

[2]

Invoking a constructor:

* allocates space for a new object
in the heap

* includes slots for all fields of all
ancestors in the class tree
(here: x andy)

* creates a pointer to the class —
this is the object’s dynamic type

* runs the constructor body after
pushing parameters and this
onto the stack

Note: fields start with a
“sensible” default
- 0 for numeric values
-null for references

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Calling super

Workspace Stack Heap
—p—QS“.e'" o By
this.y = initY; int x = d.getO; »
this ~—
y |
inity | 2]
Call to super:

* The constructor (implicitly) calls
the super constructor

* Invoking a
method or constructor pushes the
saved workspace, the method
params (none here) and a new
this pointer.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Abstract Stack Machine

Workspace Stack
—'O—qu.e'") 2 decy:
this.x = @; int x = d.get();

this o~
inity | 2|
Eéis.y = initY;

this P

(Running Object’s default
constructor omitted.)

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Assigning to a Field

Workspace Stack Heap
this.x = 0; Decr 4= =
int x = d.getQ);
X
1 -
this y I 0 I

inity | 2]

Eﬁis.y = initY;

this o

Assighment into the this.x field

goes in two steps:

- look up the value of th1is in the

stack

- write to the “X” slot of that

object.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

__Assigning to a Field

Stack

Decr d = _;
d.decQ);
int x = d.getQ);

this

initY

Eﬁis.y = initY;

this

Assighment into the this.x field

goes in two steps:

- look up the value of this in the

stack

- write to the “x” slot of that

object.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends Object

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Done with the call

Workspace Stack Heap
. Decr d = _;
’ d.decQ);
int x = d.getQ);
X
1 (-
this y I 0 I

inity | 2]

Eﬁis.y = initY;

this o

Done with the call to “super”, so
pop the stack to the previous
workspace.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Continuing

Workspace Stack Heap
this.y = initY; oSecty: =
int x = d.getQ);
X
this [-
y |

inity | 2]

Continue in the Decr class’s
constructor.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO{incBy(-y);}

Abstract Stack Machine

Workspace

Stack

this.y

2,

Decr d = _;
d.decQ);

int x = d.getQ);

this

k

initY

[2]

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Assigning to a field

Workspace Stack Heap Class Table

Decr d = _;
d.decQ);

this.y = 2;

Object

int x = d.getQ);

String toString(){..

boolean equals..

Counter

extends Object

Counter() { x = 0; }

Assighment into the this.y
field. void incBy(int d){.}

int get() {return x;}

(This really takes two steps as we
saw earlier, but we’re skipping

Decr
some for the sake of brevity...)

extends Counter

Decr(int initY) { .. }

void dec(){incBy(-y);}

Done with the call

Workspace Stack Heap
. Decr d = _;
’ d.decQ);
int x = d.getQ);
X /)
1 (-
this y I > I

inity | 2]

Done with the call to the Decr
constructor, so pop the stack and
return to the saved workspace,
returning the newly allocated
object (now in the th1is pointer).

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Returnmg the Newly Constructed Object

Workspaﬁ/

Decr d =/;
d.dec(Q);
int x = d.get(Q);

Stack

Continue executing the program.

_g

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Allocating a local variable

Workspace Stack

d.decQ; d

1]

int x = d.get(Q);

Allocate a stack slot for the local
variable d. Note that it’s mutable...
(bold box in the diagram).

Aside: since, by default, fields and
local variables are mutable in Java,
we sometimes omit the bold boxes

and just assume the contents can
be modified.

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Dynamic Dispatch: Finding the Code

Worksgag/

decC

1]

int x = d.get(Q);

Invoke the dec method on the
object. The code is found by
“pointer chasing” through the class
hierarchy.

This is an example of dynamic
dispatch: Which code is run
depends on the dynamic class of
the object. (In this case, Decr.)

Stack x ap

Search through the
methods of the Decr,
class trying to find one
called dec.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Dynamic Dispatch: Finding the Code

Workspace

Stack

this.incBy(-this.y);

d

1|

{ﬁt x = d.getQ);

this

Call the method, remembering the
current workspace and pushing the
this pointer and any arguments

(none in this case).

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Reading a Field’s Contents

Workspace Stack

this.incBy(-#£V); d

1|

{ﬁt x = d.getQ);

this

Read from the Y slot of the object.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decO{incBy(-y);}

Dynamic Dispatch, Again

Workspag/ Stack

/

A ABY(-2); d

{ﬁt x = d.getQ);

this

Invoke the incBy method on the
object via dynamic dispatch.

In this case, the 1ncBy method is
inherited from the parent, so
dynamic dispatch must search up
the class tree, looking for the
implementation code.

The search is guaranteed to
succeed — Java’s static type system
ensures this.

Search through the
methods of the Decr
class looking for one
called 1ncBy.

If the search fails,
recursively search the
parent classes.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends
Counter
void incBy(int d){..}

int get() {return x;}

Decr

extends Counter

Decr(int imd

dec(){incBy(-y);}

Running the body of 1hcBYy

Workspace

Stack Heap

this.x =

d 1]

{ﬁt x = d.getQ);

this

this.x

It takes a few steps...

Body of 1ncBy:
-reads this.X
- looks up d

- computes result this.x + d
- stores the answer (-2) in this.Xx

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

After a few more steps...

Workspace Stack

int x = d.get(Q); d I‘II

Now use dynamic dispatch to invoke the
get method for d. This involves
searching up the class hierarchy again...

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

After yet a few more steps...

Workspace

Stack

1]

L -2]

Done! (Phew!)

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Summary: this and dynamic dispatch

¢ When object’s method is invoked, as in 0.m(), the code that runs is
determined by O’s dynamic class.

— The dynamic class, represented as a reference into the class table, is included
in the object structure in the heap

— If the method is inherited from a superclass, determining the code for m might
require searching up the class hierarchy via references in the class table
— This process of dynamic dispatch is the heart of OOP!

Once the code for m has been determined, a binding for th1is is pushed
onto the stack.

— The this reference is used to resolve field accesses and method invocations
inside the code.

Static members and the Java ASM

Static Members

 C(Classes in Java can also act as containers for code and data.

e The modifier stat1ic means that the field or method is
associated with the class and not instances of the class.

You can do a static assignment

to initialize a static field.
class C { éf,/””/

public static int x = 23;
public static int someMethod(int y) { return C.x + y; }
public static void main(String args[]) {

.
}

// Elsewhere:
C.x = C.x + 1;
C.someMethod(17);

\ Access to the static member uses the class name

C.xorC.foo()

“m

26: Based on your understanding of this, is it possible to refer to this in a static

method?
No
0%
Yes
0%
I'm not sure

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Based on your understanding of ‘this’, is it possible to
refer to ‘this’ in a static method?

1. No
2. Yes
3. I’'m not sure

Class Table Associated with C

The class table entry for C
C has a field slot for X. :
\ extends Object
Updates to C. X modify E—y— I >3 I
the contents of this

static int someMethod(int y) {
return x + y; }

slot: C.x = 17;

static void main(String args[])

{.}

A static field is a global variable
— There is only one heap location for it (in the class table)

— Modifications to such a field are visible everywhere the field is
 if the field is public, this means everywhere

— Use with care!

Static Methods (Details)

Static methods do not have access to a th1is reference
— Why? There isn’t an instance to dispatch through!
— Therefore, static methods may only directly call other static methods.
— Similarly, static methods can only directly read/write static fields.

— Of course a static method can create instance of objects (via hew) and
then invoke methods on those objects.

Gotcha: It is possible (but confusing) to invoke a static method
as though it belongs to an object instance.
— e.g. o.someMethod(17) where someMethod is static

Subtype Polymorphism

VS.

Parametric Polymorphism

Review: Subtype Polymorphism*

e Main idea:

Anywhere an object of type A is needed, an object that is
a subtype of A can be provided.

* If Bis asubtype of A, it provides all of A’s (public) methods.

*polymorphism = many shapes

Is subtype
polymorphism
enough?

Mutable Queue Interface in OCaml

module type QUEUE =

sig
(* type of the data structure *)
type 'a queue

(* Make a new, empty queue *)
val create : unit -> 'a queue

(* Add a value to the end of the queue *)
val enq : 'a -> 'a queue -> unit

(* Remove the front value and return it (if any) *)
val deq : 'a queue -> ‘a

(* Dgter'mine 1f the queue 1s empty *) How can we
val is_empty : ‘a queue -> bool
end

translate this
interface to Java?

Java Interface using Subtyping

module type QUEUE =
sig

type 'a queue

val create : unit -> 'a queue

interface ObjQueue {

// no constructors
// 1n an interface

public void enq(Object elt);

val enqg : 'a -> 'a queue -> unit
val deq : 'a queue -> 'a public Object deq();
. public boolean isEmpty(Q);
val is_empty : 'a queue -> bool
hy
end
OCaml Java

Subtype Polymorphism

interface ObjQueue {
public void enq(Object elt);
public Object deq();
public boolean isEmpty();

¥
ObjQueue g = ..; What type should we write for A?
g.enq(" CIS 120 "); 1. String
A X =q.deq(); 2. Object
3. ObjQueue
4. None of the above

ANSWER: Object

Subtype Polymorphism

interface ObjQueue {
public void enq(Object elt);
public Object deq();
public boolean isEmpty();

}

ObjQueue g = ..;

q.enq(" CIS 120 ");

Object x = q.deq(); |
System.out.println(x.trim());| < Does this line type check

1. Yes

2. No

ANSWER: No 3. Itdepends

Subtype Polymorphism

interface ObjQueue {
public void enq(Object elt);
public Object deq();
public boolean isEmpty();

}

ObjQueue g = ..; What type for B?

gqg.enq(" CIS 120 "); 1. Point

Object x = q.deq(); 2. Object

g.enq(new Point(0.0,0.0)); 3. ObjQueue
4.

___B___ y=q.deqQ);

None of the above

ANSWER: Object

Parametric Polymorphism (a.k.a. Generics)

e Main idea:

Parameterize a type (i.e. interface or class) by another type.

public interface Queue<E> {
void enq(E 0);
E deqQ);
boolean isEmpty();

}

 The implementation of a parametric polymorphic interface
cannot depend on the implementation details of the
parameter.

— the implementation of eng cannot invoke any methods on ‘o’
(except those inherited from Object)

— i.e., the only thing we know about E is that it is a subtype of Object

Generics (Parametric Polymorphism)

public interface Queue<E> {
void enq(E 0);
E deqQ);
boolean isEmpty();

Queue<String> q = ..;

q.enq(" CIS 120 ");
String x = q.deq(); // What type of x? String
System.out.println(x.trim()); // Is this valid? Yes!
g.enq(new Point(0.0,0.0)); // Is this valid? No!

|

Subtyping and Generics

Subtyping and Generics*

Queue<String> gs
Queue<Object> qo =

qo.enq(new Object(
String s = gs.deq(

new QueueImpl<>(); Ok? Sure!

as,

)
),

Ok? Let’s see..

Ok? I guess
ok? Noooo!

* Java generics are invariant:

— Subtyping of arguments to generic types does not imply subtyping
between the instantiations:

Object

String

but...

Queue<Object>

Hardest part to
learn about
generics and
subtyping...

Queue<String>

* Subtyping and generics interact in other ways too. Java supports bounded
polymorphism and wildcard types, but those are beyond the scope of CIS 120.

26: Subtyping with Generics

Which of these are true, assuming that class Queuelmpl<E>
implements interface Queue<E>? 2

1. Queuelmpl<Queue<String>> is a subtype of
Queue<Queue<String>>

2. Queue<Queuelmpl<String>> is a subtype of
Queue<Queue<String>> 3

3. Both
4. Neither

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Subtyping and Generics

Which of these are true, assuming that class Queuelmpl<E>
implements interface Queue<E>?

1. Queuelmpl<Queue<String>> is a subtype of
Queue<Queue<String>>

2. Queue<Queuelmpl<String>> is a subtype of
Queue<Queue<String>>

3. Both
4. Neither

Answer: 1

